freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學-二次函數(shù)-綜合題含詳細答案-wenkub.com

2025-03-31 07:09 本頁面
   

【正文】 =2;()2=10 (2)①解:在C點相遇得到方程在B點相遇得到方程 ∴ 解得 ∵在邊BC上相遇,且不包含C點 ∴②如下圖 =15過M點做MH⊥AC,則 ∴ ∴ = = 因為,所以當時,取最大值.【點睛】本題重點考查動點問題,二次函數(shù)的應用,求不規(guī)則圖形的面積等知識點,第一問關鍵能夠從圖像中得到信息,第二問第一小問關鍵在理清楚運動過程,第二小問關鍵在能夠用x表示出S1和S214.如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點A(1,0),B(3,0),交y軸于點C.(1)求這個二次函數(shù)的表達式;(2)點P是直線BC下方拋物線上的一動點,求△BCP面積的最大值;(3)直線x=m分別交直線BC和拋物線于點M,N,當△BMN是等腰三角形時,直接寫出m的值.【答案】(1)這個二次函數(shù)的表達式是y=x2﹣4x+3;(2)S△BCP最大=;(3)當△BMN是等腰三角形時,m的值為,﹣,1,2.【解析】分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PE的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;(3)根據(jù)等腰三角形的定義,可得關于m的方程,根據(jù)解方程,可得答案.詳解:(1)將A(1,0),B(3,0)代入函數(shù)解析式,得,解得,這個二次函數(shù)的表達式是y=x24x+3;(2)當x=0時,y=3,即點C(0,3),設BC的表達式為y=kx+b,將點B(3,0)點C(0,3)代入函數(shù)解析式,得,解這個方程組,得 直線BC的解析是為y=x+3,過點P作PE∥y軸,交直線BC于點E(t,t+3),PE=t+3(t24t+3)=t2+3t,∴S△BCP=S△BPE+SCPE=(t2+3t)3=(t)2+,∵<0,∴當t=時,S△BCP最大=.(3)M(m,m+3),N(m,m24m+3)MN=m23m,BM=|m3|,當MN=BM時,①m23m=(m3),解得m=,②m23m=(m3),解得m=當BN=MN時,∠NBM=∠BMN=45176。9.如圖1,拋物線經(jīng)過點、兩點,是其頂點,將拋物線繞點旋轉(zhuǎn),得到新的拋物線.(1)求拋物線的函數(shù)解析式及頂點的坐標;(2)如圖2,直線經(jīng)過點,是拋物線上的一點,設點的橫坐標為(),連接并延長,交拋物線于點,交直線l于點,求的值;(3)如圖3,在(2)的條件下,連接、在直線下方的拋物線上是否存在點,使得?若存在,求出點的橫坐標;若不存在,請說明理由.【答案】(1),頂點為:;(2)的值為﹣3;(3)存在,點的橫坐標為:或.【解析】【分析】(1)運用待定系數(shù)法將、代入中,即可求得和的值和拋物線解析式,再利用配方法將拋物線解析式化為頂點式即可求得頂點的坐標;(2)根據(jù)拋物線繞點旋轉(zhuǎn),可求得新拋物線的解析式,再將代入中,即可求得直線解析式,根據(jù)對稱性可得點坐標,過點作軸交直線于,過作軸交直線于,由,即可得,再證明∽,即可得,建立方程求解即可;(3)連接,易證是,可得,在軸下方過點作,在上截取,過點作軸于,連接交拋物線于點,點即為所求的點;通過建立方程組求解即可.【詳解】(1)將、代入中,得解得∴拋物線解析式為:,配方,得:,∴頂點為:;(2)∵拋物線繞點旋轉(zhuǎn),得到新的拋物線.∴新拋物線的頂點為:,二次項系數(shù)為:∴新拋物線的解析式為:將代入中,得,解得,∴直線解析式為,∵,∴直線的解析式為,由拋物線與拋物線關于原點對稱,可得點、V關于原點對稱,∴如圖2,過點作軸交直線于,過作軸交直線于,則,∴,∵∴,∵軸,軸∴∴∽∴,即∴解得:,∵∴的值為:﹣3;(3)由(2)知:,∴,如圖3,連接,在中,∵,∴∴是直角三角形,∴,∵∴,在軸下方過點作,在上截取,過點作軸于,連接交拋物線于點,點即為所求的點;∵,∴∵∴∴,設直線解析式為,則,解得∴直線解析式為,解方程組,得,∴點的橫坐標為:或.【點睛】本題考查了二次函數(shù)圖象和性質(zhì),待定系數(shù)法求函數(shù)解析式,旋轉(zhuǎn)變換,相似三角形判定和性質(zhì),直線與拋物線交點,解直角三角形等知識點;屬于中考壓軸題型,綜合性強,難度較大.10.如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標為t.(1)求拋物線的表達式;(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.①求S關于t的函數(shù)表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標.【答案】(1)y=﹣x2+2x+3.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(3)y=﹣x+3;P點到直線BC的距離的最大值為,此時點P的坐標為(,).【解析】【分析】(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標利用平行四邊形的性質(zhì)可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結(jié)合CE≠PE可得出此時不存在符合題意的點M;(3)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關于t的函數(shù)表達式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出
點擊復制文檔內(nèi)容
法律信息相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1