freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)與平行四邊形有關(guān)的壓軸題及答案-wenkub.com

2025-03-30 22:25 本頁(yè)面
   

【正文】 ∴∠FCP=∠GCE=60176。 ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120176。 CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如圖:CP⊥GF仍成立理由如下:過(guò)D作EF的平行線,交FP延長(zhǎng)于點(diǎn)G連接CG、CF證△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60176。 ∴∠DAH=∠ABC=60176。則∠DAH=∠ABC=60176?!唷螧AF=∠DAE,∵四邊形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90176?!螦EF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周長(zhǎng)為32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的長(zhǎng)為6cm.點(diǎn)睛:此題主要考查學(xué)生對(duì)全等三角形的判定與性質(zhì)和矩形的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,難易程度適中,是一道很典型的題目.12.如圖,拋物線y=mx2+2mx+n經(jīng)過(guò)A(﹣3,0),C(0,﹣)兩點(diǎn),與x軸交于另一點(diǎn)B.(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的解析式;(2)過(guò)點(diǎn)C作CE∥x軸交拋物線于點(diǎn)E,寫(xiě)出點(diǎn)E的坐標(biāo),并求AC、BE的交點(diǎn)F的坐標(biāo)(3)若拋物線的頂點(diǎn)為D,連結(jié)DC、DE,四邊形CDEF是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.【答案】(1)y=x2+x﹣;(2)F點(diǎn)坐標(biāo)為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明見(jiàn)解析【解析】【分析】將A、C點(diǎn)的坐標(biāo)代入拋物線的解析式中,通過(guò)聯(lián)立方程組求得該拋物線的解析式;根據(jù)(1)題所得的拋物線的解析式,可確定拋物線的對(duì)稱軸方程以及B、C點(diǎn)的坐標(biāo),由CE∥x軸,可知C、E關(guān)于對(duì)稱軸對(duì)稱。EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四邊形AECF是菱形【點(diǎn)睛】本題考查了折疊問(wèn)題,全等三角形的判定和性質(zhì),平行四邊形的性質(zhì),菱形的判定,熟練掌握這些性質(zhì)和判定是解決問(wèn)題的關(guān)鍵.11.如圖,已知矩形ABCD中,E是AD上一點(diǎn),F(xiàn)是AB上的一點(diǎn),EF⊥EC,且EF=EC.(1)求證:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周長(zhǎng)為32cm,求AE的長(zhǎng).【答案】(1)證明見(jiàn)解析;(2)6cm.【解析】分析:(1)根據(jù)EF⊥CE,求證∠AEF=∠ECD.再利用AAS即可求證△AEF≌△DCE.(2)利用全等三角形的性質(zhì),對(duì)應(yīng)邊相等,再根據(jù)矩形ABCD的周長(zhǎng)為32cm,即可求得AE的長(zhǎng).詳解:(1)證明:∵EF⊥CE,∴∠FEC=90176。AD=B39。且∠AED=∠CEB39。或135176。=+90=176?!唳?90176。∴α=∠ANO+90176。=45176。;Ⅱ、當(dāng)AN=ON時(shí),∴∠NAO=∠AON=45176。∴AG′⊥DE′;(3)①正方形OE′F′G′的邊OG′與正方形ABCD的邊AD相交于點(diǎn)N,如圖3,Ⅰ、當(dāng)AN=AO時(shí),∵∠OAN=45176。由四邊形OEFG是正方形,得到OG′=OE′,∠E′OG′=90176。176。﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如圖3,連接DM,取AC的中點(diǎn)N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點(diǎn),∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點(diǎn),∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點(diǎn)睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識(shí),解題的關(guān)鍵是作輔助線,并熟練掌握全等三角形的判定方法,特別是第三問(wèn),輔助線的作法是關(guān)鍵.7.如圖所示,矩形ABCD中,點(diǎn)E在CB的延長(zhǎng)線上,使CE=AC,連接AE,點(diǎn)F是AE的中點(diǎn),連接BF、DF,求證:BF⊥DF.【答案】見(jiàn)解析.【解析】【分析】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD,進(jìn)而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進(jìn)而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【點(diǎn)睛】本題考查了矩形的性質(zhì),全等三角形的判定和對(duì)應(yīng)邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.8.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長(zhǎng)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1