freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

周惠中微觀經(jīng)濟(jì)學(xué)復(fù)習(xí)資料上-資料下載頁(yè)

2025-08-01 10:24本頁(yè)面

【導(dǎo)讀】理性和相對(duì)稀缺性。經(jīng)濟(jì)學(xué)基礎(chǔ)——基礎(chǔ)和供應(yīng)。而這實(shí)際上涉及到人們知識(shí)和信。息完備性、及時(shí)性和無(wú)代價(jià)的假定。是機(jī)會(huì)成本產(chǎn)生的原因。被用于一種用途時(shí),就不可能被用于其它用途。價(jià)值叫做這一定量某種資源的機(jī)會(huì)成本。–機(jī)會(huì)成本是經(jīng)濟(jì)學(xué)中一個(gè)最重要的概念。需求和欲望的科學(xué)。用來(lái)解釋和預(yù)測(cè)現(xiàn)象的。論模型的基本假設(shè)和描述是否有合理的現(xiàn)實(shí)依據(jù)。實(shí)際經(jīng)驗(yàn)是否相符合。致上從某種角度對(duì)經(jīng)濟(jì)現(xiàn)實(shí)進(jìn)行簡(jiǎn)化和描述。同觀點(diǎn)的理論所特別強(qiáng)調(diào)的因素。經(jīng)濟(jì)理論和模型的檢驗(yàn)常常是很困難的事。實(shí)證經(jīng)濟(jì)學(xué)和規(guī)范經(jīng)濟(jì)學(xué)。它一般回答“是什么”的問(wèn)題,而不涉及。–實(shí)證經(jīng)濟(jì)學(xué)和規(guī)范經(jīng)濟(jì)學(xué)之間往往相互聯(lián)系。這種思維的顯著特點(diǎn)就是其。抬高票證的黑市價(jià)格。新的信息又會(huì)進(jìn)一步影響參與者的行為。則取決于消費(fèi)者的收入水平和物價(jià)水平。因購(gòu)買(mǎi)量不同而價(jià)格不同的價(jià)格制度稱(chēng)。不是僅僅對(duì)他們必須購(gòu)買(mǎi)的食品進(jìn)行補(bǔ)貼,這時(shí)候的預(yù)算約束線是什么樣的呢?

  

【正文】 有的價(jià)格和收入按相同的比例變化,需求量保持不變。 附錄:有補(bǔ)償?shù)暮蜔o(wú)補(bǔ)償?shù)男枨? ? 補(bǔ)償需求函數(shù) – 把消費(fèi)者愿意購(gòu)買(mǎi)的商品數(shù)量作為商品價(jià)格和他的效用的函數(shù)??梢园严M(fèi)者效用固定,使消費(fèi)者支出極小化進(jìn)行推導(dǎo)。 附錄:有補(bǔ)償?shù)暮蜔o(wú)補(bǔ)償?shù)男枨? – 仍 假定效用函數(shù)是 : – 預(yù)算約束是 – 受效用約束使支出最小化 , 構(gòu)造拉格朗日函數(shù) – 令上式的偏導(dǎo)數(shù)等于零 , 得: 21qqU ?022110 ??? qpqpy)( 2102211 qqUqpqpZ ???? ?0211????? qpqZ ?0122????? qpqZ ?0210 ????? qqUZ?附錄:有補(bǔ)償?shù)暮蜔o(wú)補(bǔ)償?shù)男枨? ? 解得補(bǔ)償需求函數(shù)為 : ? 請(qǐng)同學(xué)自己證明補(bǔ)償需求函數(shù)是零次齊次的。 1201 ppUq ?2102 ppUq ?第 4章 結(jié)束 個(gè)人需求和市場(chǎng)需求 第 5章 生產(chǎn)技術(shù)和生產(chǎn)函數(shù) 本章概要 ? 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 邊際報(bào)酬遞減規(guī)律 ? 等產(chǎn)量曲線 ? 規(guī)模報(bào)酬 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 我們主要從供給方面來(lái)研究市場(chǎng) ? 在本章中我們將分析 : –廠商如何有效地組織生產(chǎn),從而使成本最小 –生產(chǎn)成本如何隨產(chǎn)量水平的變化而變化 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 生產(chǎn)過(guò)程 – 將投入品(有時(shí)也稱(chēng)生產(chǎn)要素)變?yōu)楫a(chǎn)出(或產(chǎn)品) ? 投入品(生產(chǎn)要素)分類(lèi) – 勞動(dòng) – 原料 – 資本 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 生產(chǎn)函數(shù) : –表示在特定的技術(shù)條件下,特定的投入品組合有效使用時(shí)的最大的可能性產(chǎn)出。 – 描述了企業(yè)有效運(yùn)行的技術(shù)可行性。 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 兩種投入品的生產(chǎn)函數(shù) : Q = F(K,L) Q = 產(chǎn)出 , K = 資本 , L = 勞動(dòng) ? 在特定的技術(shù)條件下 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 線性生產(chǎn)函數(shù): Q=aK+bL ? 里昂惕夫生產(chǎn)函數(shù) Q = 100min{L,K/2} ? 柯布 —道格拉斯生產(chǎn)函數(shù) Q = AKαLβ 可以很容易地轉(zhuǎn)化為線性函數(shù),兩邊取對(duì)數(shù) lnQ=lnA+αlnK+βlnL 生產(chǎn)與生產(chǎn)函數(shù) ? 生產(chǎn)函數(shù) (production function) – 表述方法 ? 圖像法:三維產(chǎn)量山,生產(chǎn)面 (production surface) O L Q K Q0=f(K0,L0) A0 (L0,K0) A0’ L0 K0 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 短期 : – 指的是在此時(shí)段內(nèi),一種和多種生產(chǎn)要素是無(wú)法變更的。 – 在此期間不可變更得投入品稱(chēng)為固定投入品 短期和長(zhǎng)期 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 長(zhǎng)期 – 指的是在此時(shí)段內(nèi)所有的投入品都是可變的 短期和長(zhǎng)期 勞動(dòng)力數(shù)量 (L) 資本數(shù)量 (K) 總產(chǎn)量 (Q) 平均產(chǎn)出 邊際產(chǎn)出 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) 0 10 0 1 10 10 10 10 2 10 30 15 20 3 10 60 20 30 4 10 80 20 20 5 10 95 19 15 6 10 108 18 13 7 10 112 16 4 8 10 112 14 0 9 10 108 12 4 10 10 100 10 8 ? 概況而言 : 2) 勞動(dòng)的平均產(chǎn)出 AP(每單位投入勞動(dòng)的產(chǎn)出) 先上升后下降 LQIn p u t L a b o rO u tpu t AP ??生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 概況而言 : 3) 勞動(dòng)邊際產(chǎn)出 MP(最后一單位勞動(dòng)所帶來(lái)的總產(chǎn)出的增加量) 開(kāi)始很快上升,之后下降甚至為負(fù)。 LQI n p u t La b o rO u tp u t MP L??????生產(chǎn)過(guò)程和生產(chǎn)函數(shù) 生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 以柯布道格拉斯生產(chǎn)函數(shù)為例: 11/???????????? LAKMPLAKLLAKAPll生產(chǎn)過(guò)程和生產(chǎn)函數(shù) ? 以柯布道格拉斯生產(chǎn)函數(shù)為例(續(xù)): –那么產(chǎn)出彈性是: ??? ll /A PMPe總產(chǎn)出 A: 切點(diǎn)斜率 = MP (20) B: OB斜率 = AP (20) C: OC斜率 = MP amp。 AP Labor per Month 每月產(chǎn)量 60 112 0 2 3 4 5 6 7 8 9 10 1 A B C D 邊際報(bào)酬遞減律 平均產(chǎn)出 邊際報(bào)酬遞減律 8 10 20 每月 產(chǎn)量 0 2 3 4 5 6 7 9 10 1 每月投入勞動(dòng) 30 E 邊際產(chǎn)出 觀察到 : E點(diǎn)左側(cè) : MP AP amp。 AP 不斷上升 E點(diǎn)右側(cè) : MP AP amp。 AP 不斷下降 E: MP = AP amp。 AP 為最大值 邊際報(bào)酬遞減律 每月投 入勞動(dòng) 每月 產(chǎn)量 60 112 0 2 3 4 5 6 7 8 9 10 1 A B C D 8 10 20 E 0 2 3 4 5 6 7 9 10 1 30 每月 產(chǎn)量 每月投 入勞動(dòng) AP =對(duì)應(yīng)點(diǎn)與原點(diǎn)連線的斜率 , 線 b, amp。 c. MP = 總產(chǎn)出曲線在該點(diǎn)的切線的斜率 , 線 a amp。 c. 邊際報(bào)酬遞減律 ? 邊際報(bào)酬遞減率 – 在一定的技術(shù)水平下,當(dāng)其它投入保持不變,隨著某一投入不斷地增加時(shí),也許邊際產(chǎn)量會(huì)遞增,但是,在達(dá)到某一界限之后,邊際產(chǎn)量就會(huì)越來(lái)越小,或者說(shuō),邊際產(chǎn)量最終一定會(huì)越來(lái)越小。這種情況就叫做邊際報(bào)酬遞減率。 邊際報(bào)酬遞減律 ? 邊際報(bào)酬遞減規(guī)律存在的條件: – 第一,以技術(shù)水平不變?yōu)榍疤幔? – 第二,以其它生產(chǎn)要素投入不變?yōu)榍疤幔? – 第三,并非一增加投入這種生產(chǎn)要素就會(huì)出現(xiàn)邊際報(bào)酬遞減規(guī)律,只是投入超過(guò)一定量時(shí)才會(huì)出現(xiàn); – 第四,所增加的生產(chǎn)要素在每個(gè)單位上的性質(zhì)都是相同的,先投入和后投入的在技術(shù)上沒(méi)有區(qū)別,只是投入總量的變化引起了收益的變化。 邊際報(bào)酬遞減律 單位時(shí)段的勞動(dòng) 單位時(shí)段的產(chǎn)量 50 100 0 2 3 4 5 6 7 8 9 10 1 A O1 C O3 O2 B 即使存在著勞動(dòng)的報(bào)酬遞減, 如果技術(shù)改進(jìn),勞動(dòng)生產(chǎn)率 也可能會(huì)提高 ? 馬爾薩斯預(yù)測(cè)由于勞動(dòng)邊際報(bào)酬遞減,同時(shí)人口不斷增加,因而會(huì)產(chǎn)生大的饑荒。 ? 為什么人類(lèi)歷史沒(méi)有按馬爾薩斯的預(yù)言發(fā)展? 馬爾薩斯和食品危機(jī) 馬爾薩斯和食品危機(jī) ? 數(shù)據(jù)表明世界上總的食物生產(chǎn)增幅高于同期人口的增長(zhǎng)。 ? 馬爾薩斯沒(méi)有考慮到由于技術(shù)的改進(jìn),糧食產(chǎn)量供大于求。 邊際報(bào)酬遞減律 ? 邊際產(chǎn)量與總產(chǎn)量和平均產(chǎn)量之間的關(guān)系 – 當(dāng)邊際產(chǎn)量大于平均產(chǎn)量時(shí),平均產(chǎn)量就上升; – 當(dāng)邊際產(chǎn)量小于平均產(chǎn)量時(shí),平均產(chǎn)量就下降; – 當(dāng)邊際產(chǎn)量變動(dòng)為零時(shí),總產(chǎn)量達(dá)到最大; – 平均產(chǎn)量達(dá)到最大時(shí),邊際產(chǎn)量和它相等。 邊際報(bào)酬遞減律 ? 邊際產(chǎn)量總是交于平均產(chǎn)量的最高點(diǎn) ? 證明: )(1/))((2APMPLLfLLfLLfL????????等產(chǎn)量線 ? 等產(chǎn)量線 –由生產(chǎn)出同一產(chǎn)量的不同投入品組合形成的曲線 等產(chǎn)量線 1 20 40 55 65 75 2 40 60 75 85 90 3 55 75 90 100 105 4 65 85 100 110 115 5 75 90 105 115 120 資本投入 1 2 3 4 5 勞動(dòng)投入 等產(chǎn)量線 L每年投入勞動(dòng) 1 2 3 4 1 2 3 4 5 5 Q1 = 55 由 5 7 90單位產(chǎn)出 時(shí)的生產(chǎn)函數(shù)得出等產(chǎn)量線 A D B Q2 = 75 Q3 = 90 C E 每年投入資本 等產(chǎn)量線圖 兩種可變投入的生產(chǎn) ? 生產(chǎn)與生產(chǎn)率之間存在著關(guān)系。 ? 長(zhǎng)期,資本投入與勞動(dòng)投入都是可變的 . ? 等產(chǎn)量線描述的是同樣產(chǎn)出下的不同的投入組合 等產(chǎn)量線的形狀 每年投入勞動(dòng) 1 2 3 4 1 2 3 4 5 5 長(zhǎng)期生產(chǎn)過(guò)程中,勞動(dòng)與資本都是可變 的和邊際報(bào)酬遞減的。 Q1 = 55 Q2 = 75 Q3 = 90 每年投 入資本 A D B C E 邊際技術(shù)替代率 每年投入勞動(dòng) 1 2 3 4 1 2 3 4 5 5 每年投入資本 如同無(wú)差異曲線, 等產(chǎn)量線向下傾斜和凸形的 1 1 1 1 2 1 2/3 1/3 Q1 =55 Q2 =75 Q3 =90 ? 概括而言 : 邊際技術(shù)替代率 和邊際生產(chǎn)率 ? 在保持產(chǎn)出不變的前提下,多投入一單位勞動(dòng), 0 K))(( M P L))(( M P KL ???? M RT S L)K/( )) ( M P( M P KL ????兩種可變投入的生產(chǎn) 投入品完全可替代時(shí)的等產(chǎn)量線 每月投入勞動(dòng) 每月投入資本 Q1 Q2 Q3 A B C 固定比例的生產(chǎn)函數(shù) 每月投入勞動(dòng) 每月投入資本 L1 K1 Q1 Q2 Q3 A B C 等產(chǎn)量曲線 ? 生產(chǎn)經(jīng)濟(jì)區(qū) (economic region of production)與脊線(ridge line) Q2 Q3 Q1 K L O A1 A2 A3 B1 B2 B3 B A Kmin L1 L1’ A1’ Lmin K1 L替代 K的極限 MPL=0 K替代 L的極限 MPK=0 生產(chǎn)非經(jīng)濟(jì)區(qū) L的第 Ⅲ 階段 K的第 Ⅰ 階段 生產(chǎn)非經(jīng)濟(jì)區(qū) K的第 Ⅲ 階段 L的第 Ⅰ 階段 生產(chǎn)經(jīng)濟(jì)區(qū) L的第 Ⅱ 階段 K的第 Ⅱ 階段 規(guī)模報(bào)酬 ? 衡量企業(yè)的規(guī)模和產(chǎn)出的關(guān)系 ? 1) 規(guī)模報(bào)酬遞增 : 如果所有投入增加一倍,而產(chǎn)出的增加超過(guò)一倍 ? 汽車(chē)裝配業(yè)的更大產(chǎn)出和更低成本 ? 一個(gè)大企業(yè)生產(chǎn)比許多小企業(yè)生產(chǎn)來(lái)得經(jīng)濟(jì) ? 等產(chǎn)量線更為緊密 規(guī)模報(bào)酬 勞動(dòng)(小時(shí)) 資本(機(jī)時(shí)) 10 20 30 規(guī)模報(bào)酬遞增:等產(chǎn)量線間越來(lái)越近 5 10 2 4 0 A 規(guī)模報(bào)酬 ? 衡量企業(yè)的規(guī)模和產(chǎn)出的關(guān)系 2) 規(guī)模報(bào)酬不變 : 如果所有投入增加一倍,而產(chǎn)出也增加一倍 ? 規(guī)模不影響要素生產(chǎn)率 ? 可能有大量生產(chǎn)商 ? 等產(chǎn)量線之間距離相等 規(guī)模報(bào)酬 勞動(dòng)(小時(shí)) 資本(機(jī)時(shí)) 規(guī)模報(bào)酬不變:等產(chǎn)量線距離相等 10 20 30 15 5 10 2 4 0 A 6 規(guī)模報(bào)酬 衡量企業(yè)的規(guī)模和產(chǎn)出的關(guān)系 3) 規(guī)模報(bào)酬遞減 : 如果所有投入增加一倍,而產(chǎn)出的增加少于一倍 ? 規(guī)模過(guò)于龐大降低生產(chǎn)率 ? 難以施展創(chuàng)業(yè)才能 ? 等產(chǎn)量線間距離越來(lái)越大 規(guī)模報(bào)酬 勞動(dòng)(小時(shí)) ) 資本(機(jī)時(shí)) 規(guī)模報(bào)酬遞減: 等產(chǎn)量線間越來(lái)越遠(yuǎn) 10 20 30 5 10 2 4 0 A 規(guī)模報(bào)酬 ? 規(guī)模報(bào)酬 –規(guī)模報(bào)酬是討論生產(chǎn)規(guī)模逐漸擴(kuò)大時(shí),對(duì)于某些技術(shù)而言的效率變化問(wèn)題。規(guī)模的擴(kuò)大和縮小涉及所有的投入變化。 –經(jīng)濟(jì)學(xué)把規(guī)模變化簡(jiǎn)化為生產(chǎn)過(guò)程中所有投入的同一比例的變化。 邊際報(bào)酬遞減律和規(guī)模報(bào)酬 ? 規(guī)模報(bào)酬 – 一般說(shuō)來(lái),給定生產(chǎn)函數(shù) f (K, L, … , M ), ? 對(duì)于 λ> 1,如果 f (λΚ, λL, … , λM ) > λf (K, L, … , M ) 則稱(chēng)為規(guī)模報(bào)酬遞增; ? 對(duì)于 λ> 1,如果 f (λΚ, λL, … , λM ) = λf (K, L, … , M ) 則稱(chēng)為規(guī)模報(bào)酬不變; ? 對(duì)于 λ> 1,如果 f (λΚ, λL, … , λM ) < λf (K, L, … , M ) 則稱(chēng)為規(guī)模報(bào)酬遞減。 對(duì)于 λ< 1,則將以上定義中的不等號(hào)反過(guò)來(lái)。 第 5章 結(jié)束 生產(chǎn)技術(shù)和生產(chǎn)函數(shù) 第 6章 成本最小化和成本函數(shù) 本章概要 ? 成本最小化 ? 從生產(chǎn)函數(shù)到成本函數(shù) ? 邊際成本和其它成本的概念 ? 短期和長(zhǎng)期平均成本
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1