【導(dǎo)讀】2.初步體會(huì)解二元一次方程組的基本思想――“消元”.取較好的名次,想在全部22場(chǎng)比賽中得到40分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?+y=40的y換為22-x,這個(gè)方程就化為一元一次方程40)22(2???種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的想法,叫做消元思想.代入消元法,簡(jiǎn)稱代入法.只求出一個(gè)未知數(shù)的值,方程組解完了嗎?把已求出的未知數(shù)的值,代入哪個(gè)方程來(lái)求另一個(gè)未知數(shù)的值較簡(jiǎn)便?怎樣知道你運(yùn)算的結(jié)果是否正確呢?知數(shù)的式子表示出來(lái).從而確定方程組的解.x、y互為相反數(shù),且x+3y=4,,3x-2y=_____________.問(wèn)題1:此方程與我們前面遇到的二元一次方程組有什么區(qū)別?如何用代入法處理兩個(gè)未知數(shù)系數(shù)的絕對(duì)值均不為1的二元一次方程組?