【導(dǎo)讀】于A項,f(-1)=e-1+(-1)-4=-5+e-1<0,f=-3<0,f(-1)f>0,A. 3.函數(shù)f=2x-2x-a的一個零點在區(qū)間(1,2)內(nèi),則實數(shù)a的取。4.已知f是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時,f. 又f=f=f=0,∴f在[0,6]上與x軸的交點個數(shù)為7.解析設(shè)n為自然數(shù),則當(dāng)n<x≤n+1時,f=2,則當(dāng)x>0時,它過點(0,1)時與函數(shù)f的圖像交于一點,向左移總是一個交點,t+1=-1或??故f在(0,1]上是減函數(shù),而在(1,+∞)上是增函數(shù),8.(13分)已知函數(shù)f=x3+2x2-ax+1.若函數(shù)f在點處的切線斜率為4,求實數(shù)a的值;解由題意得g=f′=3x2+4x-a.