freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

不等式證明方法共五篇-資料下載頁

2024-10-28 23:26本頁面
  

【正文】 電話:04768705333第1頁/共9頁 金牌師資,笑傲高考ab=12122013年數(shù)學(xué)VIP講義22+bc2222+ca2222=212(2ab2222+2bc2222+2ca)22+ca)+(ca2[(ab+bc)+(bc22+ab)]22≥(2abc+2abc2+2abc)=ab(a+b+c)1a+1c+【例5】(1)a,b,c為正實數(shù),求證:+(2)a,b,c為正實數(shù),求證:a21bb2≥c21ab+1bc+1ac;b+c+a+ca+b≥a+b+c2。(1)不等式的結(jié)構(gòu)與例4完全相同,處理方法也完全一樣。(2)同學(xué)們可試一試,再用剛才的方法處理該題是行不通的。注意到從左向右,分式變成了整式,可考慮在左邊每一個分式后配上該分式的分母,利用二元基本不等式后約去分母,再利用不等式可加性即可達到目的。試一試行嗎?a2b+cb2+(b+c)≥2a2b+cb2(b+c)=2aa+cc2+(a+c)≥2a+c(a+c)=2ba+b+(a+b)≥2c2a+b(a+b)=2c相加后發(fā)現(xiàn)不行,a,b,c的整式項全消去了。為了達到目的,應(yīng)在系數(shù)上作調(diào)整。a2b+c+b+c4≥a,b2a+c+a+c4≥b,c2a+b+a+b4≥a 相向相加后即可?!纠?】 x,y為正實數(shù),x+y=a,求證:x+y≥2a22。思路一;根據(jù)x+y和x2+y2的結(jié)構(gòu)特點,聯(lián)想到算術(shù)平均數(shù)與平方平均數(shù)之間的不等關(guān)系?!?x+y22≤2x2+y222∴ x+y≥(x+y)2=a22思路二:因所求不等式右邊為常數(shù),故可從求函數(shù)最小值的角度去思考。思路一所用的是基本不等式法,這里采用消元思想轉(zhuǎn)化為一元函數(shù),再用單調(diào)性求解。換元有下列三種途徑:途徑1:用均值換元法消元: 令 x=2a2+m,y=aa22m22則 x+y=(+m)+(m)=2m+222aa22≥a22途徑2:代入消元法: y=ax,0a2)2+a22≥a22中天教育咨詢電話:04768705333第2頁/共9頁 金牌師資,笑傲高考途徑3:三角換元法消元:令 x=acos2θ,y=asin2θ,θ∈(0,]2p2013年數(shù)學(xué)VIP講義則 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)22sin2θcos2θ]=a[12(sin2θ)]=a(12212212sin2θ)≥a22注:為了達到消元的目的,途徑1和途徑3引入了適當?shù)膮?shù),也就是找到一個中間變量表示x,y。這種引參的思想是高中數(shù)學(xué)常用的重要方法?!纠?】 已知ab0,求證:(ab)8a2a+b2ab(ab)8b2。12所證不等式的形式較復(fù)雜(如從次數(shù)看,有二次,一次,次等),難以從某個角度著手。故考慮用分析法證明,即執(zhí)果索因,尋找使不等式成立的必要條件。實際上就是對所證不等式進行適當?shù)幕啞⒆冃?,實際上這種變形在相當多的題目里都是充要的。a+b2ab=a+b2ab2b)(a(a+=(a2b)2ab=(a+b)b)(a8a2所證不等式可化為∵ ab0 ∴ ab ∴ ab0b)2(a2b)2(a+b)(a8b2b)2∴ 不等式可化為:(a+4ab)21(a+4bb)22236。239。(a+b)4a即要證237。2239。238。4b(a+b)236。239。a+b2a只需證237。239。2ba+b238。在ab0條件下,不等式組顯然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx+3+8,求證:對任意實數(shù)a,b,恒有f(a),采用常規(guī)方法難以著手。根據(jù)表達式的特點,借助于函數(shù)思想,可分別求f(a)及g(b)=b24b+f(a)=112的最值,看能否通過最值之間的大小關(guān)系進行比較。=82(2)a2a24aa+3+8+8=2a8+82a≤282a=82a842=2令 g(b)=b24b+11232 ≥32 g(b)=(b2)2+中天教育咨詢電話:04768705333第3頁/共9頁 金牌師資,笑傲高考∵ 3222013年數(shù)學(xué)VIP講義∴ g(b)f(a)注:本題實際上利用了不等式的傳遞性,只不過中間量為常數(shù)而已,這種思路在兩數(shù)大小比較時曾講過。由此也說明,實數(shù)大小理論是不等式大小理論的基礎(chǔ)。【例9】 已知a,b,c∈R,f(x)=ax2+bx+c,當|x|≤1時,有|f(x)|≤1,求證:(1)|c|≤1,|b|≤1;(2)當|x|≤1時,|ax+b|≤2。這是一個與絕對值有關(guān)的不等式證明題,除運用前面已介紹的不等式性質(zhì)和基本不等式以外,還涉及到與絕對值有關(guān)的基本不等式,如|a|≥a,|a|≥a,||a||b||≤|a177。b|≤|a|+|b|,|a1177。a2177。?177。an|≤|a1|+|a2|+?+|an|。就本題來說,還有一個如何充分利用條件“當|x|≤1時,|f(x)|≤1”的解題意識。從特殊化的思想出發(fā)得到: 令 x=0,|f(0)|≤1 即 |c|≤1 當x=1時,|f(1)|≤1;當x=1時,|f(1)|≤1 下面問題的解決試圖利用這三個不等式,即把f(0),f(1),f(1)化作已知量,去表示待求量?!?f(1)=a+b+c,f(1)=ab+c ∴ b=12[f(1)f(1)] 12|f(1)f(1)|≤12[|f(1)|+|f(1)|]≤12(1+1)≤1 ∴ |b|=(2)思路一:利用函數(shù)思想,借助于單調(diào)性求g(x)=ax+b的值域。當a0時,g(x)在[1,1]上單調(diào)遞增 ∴ g(1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)f(0)≤|f(1)f(0)|≤|f(1)|+|f(0)|≤2 g(1)=a+b=f(0)f(1)=[f(1)f(0)]≥|f(1)f(0)|≥[|f(1)|+|f(0)|]≥2 ∴2≤g(x)≤2 即 |g(x)|≤2 當a思路二:直接利用絕對值不等式為了能將|ax+b|中的絕對值符號分配到a,b,可考慮a,b的符號進行討論。當a0時|ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面對b討論① b≥0時,a+|b|=a+b=|a+b|=|f(1)f(0)| ≤ |f(1)|+|f(0)|≤2; ② b評注:本題證明過程中,還應(yīng)根據(jù)不等號的方向,合理選擇不等式,例如:既有|ab|≥|a||b|,又有|ab|≥|b||a|,若不適當選擇,則不能滿足題目要求。中天教育咨詢電話:04768705333第4頁/共9頁 金牌師資,笑傲高考2013年數(shù)學(xué)VIP講義設(shè)a,b為正數(shù),且a+b≤4,則下列各式一定成立的是 A、C、1a12+1b1a≤+141b B、≤1 D、141a≤+1a+1b≤≤1b≥1已知a,b,c均大于1,且logaclogbc=4,則下列各式中一定正確的是 A、ac≥b B、ab≥c C、bc≥a D、ab≤c已知a,b,c0,且a+bc,設(shè)M=a4+a+bb+cc4+c,N=,則MN的大小關(guān)系是A、MN B、M=N C、M已知函數(shù)f(x)=xx3,x1,x2,x3∈R,且x1+x20,x2+x30,x3+x10,則f(x1)+f(x2)+f(x3)的值 A、一定大于零 B、一定小于零 C、一定等于零 D、正負都有可能若a0,b0,x=111(+)2ab1a+b1ab,y=,z=,則A、x≥yz B、x≥zy C、y≥xz D、yz≥x設(shè)a,b∈R,下面的不等式成立的是 A、a+3abb B、abab+ab C、(二)填空題設(shè)a0,b0,a≠b,則aabb與abba的大小關(guān)系是__________。若a,b,c是不全相等的正數(shù),則(a+b)(b+c)(c+a)______8abc(用不等號填空)。1當00且t≠1時,logat與log21t+1a22aba+1b+1 D、a+b≥2(ab1)22的大小關(guān)系是__________。n1若a,b,c為Rt△ABC的三邊,其中c為斜邊,則an+bn與c(其中n∈N,n2)的大小關(guān)系是________________。(三)解答題1已知a0,b0,a≠b,求證:a+1已知a,b,c是三角形三邊的長,求 證:1中天教育咨詢電話:04768705333第5頁/共9頁ab+c+ba+c+ca+b2。bab+ba。金牌師資,笑傲高考1已知a≥0,b≥0,求證:1若a,b,c為正數(shù),求證:1設(shè)a0,b0,且a+b=1,求證:(a+已知a+b+c0,ab+bc+ca0,abc0,求證:a,b,c全為正數(shù)。1a)(b+1b)2541a+1b+1ca82013年數(shù)學(xué)VIP講義12(a+b)2+14(a+b)≥aa+ba?!?b383+c38。abc≥。中天教育咨詢電話:04768705333第6頁/共9頁
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1