【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(學(xué)生版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2025-10-17 15:00
【總結(jié)】第一篇:壓軸題型訓(xùn)練5-構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 函數(shù)是高中數(shù)學(xué)的基礎(chǔ),,我們可根據(jù)不等式的結(jié)構(gòu)特點,建立起適當(dāng)?shù)暮瘮?shù)模型,利用函數(shù)的單調(diào)性、凸性等性質(zhì),靈活、、二次函數(shù)型: :a...
2025-10-18 17:42
【總結(jié)】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構(gòu)造一個函數(shù)然后做差求導(dǎo),確定單調(diào)性??墒沁€是一點思路...
2025-10-21 22:00
【總結(jié)】第一篇:構(gòu)造函數(shù)法證明不等式的八種方法 構(gòu)造函數(shù)法證明不等式的八種方法 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點。 解...
2025-10-19 04:52
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(教師版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2025-10-18 22:43
【總結(jié)】第一篇:數(shù)列----利用函數(shù)證明數(shù)列不等式 數(shù)列已知數(shù)列{an}的前n項和為Sn,且a2an=S2+Sn對一切正整數(shù)n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)設(shè)a10,數(shù)列{lg大值。 2已知數(shù)列...
2025-10-19 03:31
【總結(jié)】第一篇:高二數(shù)學(xué)構(gòu)造函數(shù)法在不等式證明中運用 構(gòu)造函數(shù)法在不等式證明中運用 作者:酒鋼三中樊等林 不等式的證明歷來是高中數(shù)學(xué)的難點,也是考察學(xué)生數(shù)學(xué)能力的主要方面。不等式的證明方法多種多樣,根據(jù)...
2024-11-08 17:00
【總結(jié)】第一篇:構(gòu)造函數(shù)法證明不等式的八種方法 導(dǎo)數(shù)之構(gòu)造函數(shù)法證明不等式 1、移項法構(gòu)造函數(shù)【例1】已知函數(shù)f(x)=ln(x+1)-x,求證:當(dāng)x-1時,恒有 1- 【解】f¢(x)=1£ln(...
2025-10-19 05:26
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式的八種方法[最終版] 構(gòu)造函數(shù)證明不等式的八種方法 一、移項法構(gòu)造函數(shù) 例: 1、已知函數(shù)f(x)=ln(x+1)-x,求證:當(dāng)x-1時,但有1- 2、已知函數(shù)f...
2025-10-22 14:50
【總結(jié)】第一篇:構(gòu)造函數(shù)法證明不等式的常見方法公開課 選修2-2 導(dǎo)數(shù)及其應(yīng)用 構(gòu)造函數(shù)法證明不等式 一、教學(xué)目標(biāo): :利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,:引導(dǎo)學(xué)生鉆研教材,歸納求導(dǎo)的四則運算法則...
2025-10-17 17:40
【總結(jié)】構(gòu)造函數(shù)解不等式1.(2015全國2理科).設(shè)函數(shù)f’(x)是奇函數(shù)的導(dǎo)函數(shù),f(-1)=0,當(dāng)時,,則使得成立的x的取值范圍是(A)(B)(C)(D)2若定義在上的函數(shù)是奇函數(shù),,當(dāng)>0時,<0,恒成立,則不等式>0的解集ABCD.3定義在上的函數(shù)滿足:則不等式(其中為自然對數(shù)的底數(shù))的解集為(
2025-06-20 04:07
【總結(jié)】第一篇:導(dǎo)數(shù)的應(yīng)用4——構(gòu)造函數(shù)證明數(shù)列不等式例題 導(dǎo)數(shù)的應(yīng)用 (四)——構(gòu)造函數(shù)證明數(shù)列不等式 例1(選講或練習(xí)):求證1111+++…+ln(1+n)234n+1 例2.已知函數(shù)f(x)...
2025-10-17 14:31
【總結(jié)】第一篇:運用函數(shù)構(gòu)造法巧證不等式[本站推薦] 運用函數(shù)構(gòu)造法巧證不等式 羅小明(江西省吉水二中331600) 不等式證明方法較多,本文介紹主元、零點、導(dǎo)數(shù)法構(gòu)造函數(shù)證明不等式,以飧讀者。關(guān)鍵字:...
2025-10-23 00:39
【總結(jié)】摘要凸性是一種重要的幾何性質(zhì),凸函數(shù)在泛函分析,最優(yōu)化理論,,同時討論了凸函數(shù)的幾條常用性質(zhì),最后重點展示了凸函數(shù)在證明不等式中的應(yīng)用.關(guān)鍵詞:凸函數(shù),凸性,判定定理,不等式AbstractConvexityisanimportantgeometr
2025-06-23 16:21
【總結(jié)】第一篇:4函數(shù)思想在不等式證明中的應(yīng)用 不等式證明中的函數(shù)思想 函數(shù)思想在不等式問題中有著廣泛的應(yīng)用,在證明不等式時,先認(rèn)真觀察不等式的結(jié)構(gòu)特征,或者經(jīng)過適當(dāng)?shù)淖冃魏笤儆^察,然后構(gòu)造出一個與該不等...
2024-11-05 06:28