【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十二分。,2.1平面向量的實(shí)際背景及基本概念,第二頁,編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十二分。,第四頁,編輯于星期六:...
2025-10-13 18:47
【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十三分。,2.4平面向量的數(shù)量積2.4.2平面向量數(shù)量積的坐標(biāo)表示、模、夾角,第二頁,編輯于星期六:點(diǎn)三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三...
2025-10-13 18:49
【總結(jié)】復(fù)習(xí)回顧?:已知、是非零向量,與一定相等嗎?為什么?思考:三角形ABC中,AB+BC+CA=____化簡:(PQ+OM)+(QO+MQ)=____0PQ引申:向量加法的多邊形法則記作:與互為反向
2025-06-06 06:24
【總結(jié)】Oxya引入:,點(diǎn)A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【總結(jié)】知能遷移:從位移的合成到向量的加法()①若|a|=|b|,則a=b或a=-b;②若AB=DC,則A、B、C、D是一個平行四邊形的四個頂點(diǎn);③若a=b,b=c,則a=c;④若a∥b,b∥c,則a∥c.答案D△OAB中,延長BA到C,使AC=
2024-11-19 23:18
【總結(jié)】典例剖析:從位移的合成到向量的加法例1給出下列命題①向量AB的長度與向量BA的長度相等;②向量a與向量b平行,則a與b的方向相同或相反;③兩個有共同起點(diǎn)并且相等的向量,其終點(diǎn)必相同;④兩個有共同終點(diǎn)的向量,一定是共線向量;⑤向量AB與向量CD是共線向量,則點(diǎn)A、B、C、D必在同一條直線上;⑥有
2024-12-05 06:37
【總結(jié)】復(fù)習(xí)回顧:(1)向量:(2)向量的大?。杭粗赶蛄康拈L度(或稱模),記作:長度為零的向量叫做零向量,記作:;長度為1個單位長度的向量叫做單位向量.(3)平行向量:方向相同或相反的非零向量;規(guī)定:零向量與任何向量平行.平行向量也叫做共線向量;任一向量與自身平行.(4)相等向量:相等的
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》7平面向量的坐標(biāo)(2)導(dǎo)學(xué)案北師大版必修4使用說明1.課前根據(jù)學(xué)習(xí)目標(biāo),認(rèn)真閱讀課本內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部內(nèi)容.,課堂上積極討論,大膽展示,完成合作探究部分.學(xué)習(xí)目標(biāo)1.理解用坐標(biāo)表示的平面向量共線的條件.2.會根據(jù)向量的坐標(biāo),判斷向量是否平行.學(xué)習(xí)重點(diǎn)
2024-11-19 23:19
【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十二分。,2.2平面向量的線性運(yùn)算2.2.3向量數(shù)乘運(yùn)算及其幾何意義,第二頁,編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十二分。...
2025-10-13 18:48
【總結(jié)】平面向量的坐標(biāo)一、教學(xué)目標(biāo):(1)掌握平面向量正交分解及其坐標(biāo)表示.(2)會用坐標(biāo)表示平面向量的加、減及數(shù)乘運(yùn)算.(3)理解用坐標(biāo)表示的平面向量共線的條件.教材利用正交分解引出向量的坐標(biāo),在此基礎(chǔ)上得到平面向量線性運(yùn)算的坐標(biāo)表示及向量平行的坐標(biāo)表示;最后通過講解例題,鞏固知識結(jié)論,培養(yǎng)學(xué)生應(yīng)用能力.通過本節(jié)內(nèi)
【總結(jié)】從位移、速度、力到向量一、教學(xué)目標(biāo):(1)理解向量與數(shù)量、向量與力、速度、位移之間的區(qū)別;(2)理解向量的實(shí)際背景與基本概念,理解向量的幾何表示,并體會學(xué)科之間的聯(lián)系.(3)通過教師指導(dǎo)發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力通過力與力的分析等實(shí)例,引導(dǎo)學(xué)生了解向量的實(shí)際背景,幫助學(xué)生理解平面向量與向量相等的含義以及
【總結(jié)】第二章空間向量與立體幾何§1從平面向量到空間向量課程目標(biāo)學(xué)習(xí)脈絡(luò)1.經(jīng)歷從平面向量到空間向量的推廣過程.2.會說出空間向量有關(guān)概念的含義.3.能指出直線的方向向量和平面的法向量.4.會用直線的方向向量和直線上一點(diǎn)確定直線,會用法向量和點(diǎn)確定平面.一二一、向
2025-11-07 23:22
【總結(jié)】(二)2.3.2平面向量的坐標(biāo)運(yùn)算(二)【學(xué)習(xí)要求】1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代
2025-01-13 20:56
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)從位移、速度、力到向量課后訓(xùn)練北師大版必修4"1.給出以下命題:①物理學(xué)中的作用力與反作用力是一對共線向量;②方向?yàn)槟掀?0°的向量與北偏東60°的向量是共線向量;③坐標(biāo)平面上的x軸與y軸都是向量.其中真命題有().
2024-11-30 11:42
【總結(jié)】1共線向量與共面向量北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點(diǎn)E是面A’C’的中心,求下列各式中
2024-11-18 00:48