【總結(jié)】貝葉斯空間計(jì)量模型一、采用貝葉斯空間計(jì)量模型的原因殘差項(xiàng)可能存在異方差,而?ML?估計(jì)方法的前提是同方差,因此,當(dāng)殘差項(xiàng)存在異方差時(shí),采用?ML?方法估計(jì)出的參數(shù)結(jié)果不具備穩(wěn)健性。二、貝葉斯空間計(jì)量模型的估計(jì)方法(一)待估參數(shù)對(duì)于空間計(jì)量模型(以空間自回歸模型為例)y
2025-06-24 20:01
【總結(jié)】貝葉斯決策論和參數(shù)估計(jì)孟濤2022年4月11日提綱?貝葉斯決策論?最小誤差率分類?分類器、判別函數(shù)及判定面?正態(tài)密度和判別函數(shù)?貝葉斯置信網(wǎng)?最大似然估計(jì)?貝葉斯估計(jì)貝葉斯決策論?貝葉斯公式?貝葉斯公式的意義?判定的誤差概率?平均誤差概率?四
2025-08-04 07:04
【總結(jié)】第二章貝葉斯決策理論,,,2.1引言2.2最小錯(cuò)誤率貝葉斯決策2.3最小風(fēng)險(xiǎn)貝葉斯決策2.4正態(tài)分布下的貝葉斯決策,2.1引言,統(tǒng)計(jì)決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類貝葉斯...
2024-10-20 20:29
【總結(jié)】模式識(shí)別——貝葉斯決策理論馬勤勇一最簡(jiǎn)單的貝葉斯分類算法?還使用前面的例子:鱸魚(yú)(seabass)和鮭魚(yú)(salmon)。?使用一個(gè)特征亮度對(duì)這兩種魚(yú)進(jìn)行表示。?新來(lái)了一條魚(yú)特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚(yú)ω1還是鮭魚(yú)ω2??已知數(shù)據(jù):鱸魚(yú)類標(biāo)號(hào)ω1,鮭魚(yú)類標(biāo)號(hào)ω2。鱸魚(yú)
2025-03-05 16:28
【總結(jié)】MCMC方法??一、貝葉斯統(tǒng)計(jì)的框架分析困難:后驗(yàn)分布是復(fù)雜的、高維的分布解決方法:馬爾可夫鏈蒙特卡羅(MCMC)方法后驗(yàn)分布先驗(yàn)信息似然函數(shù)?目前,MCMC已經(jīng)成為一種處理復(fù)雜統(tǒng)計(jì)問(wèn)題的特別流行的工具,尤其在經(jīng)常需要復(fù)雜的高維積分運(yùn)算的貝葉斯分析領(lǐng)域更是如此。在那里,高
2025-01-19 09:54
【總結(jié)】17/18第四章貝葉斯分析BayeseanAnalysis§一、決策問(wèn)題的表格表示——損失矩陣對(duì)無(wú)觀察(No-data)問(wèn)題a=δ可用表格(損失矩陣)替代決策樹(shù)來(lái)描述決策問(wèn)題的后果(損失):……π()…π()…
2024-10-25 00:52
【總結(jié)】第二章貝葉斯決策理論?引言?最小錯(cuò)誤率貝葉斯決策???統(tǒng)計(jì)決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類?貝葉斯決策是統(tǒng)計(jì)決策理論的基本方法,它的基本假定是分類決策是在概率空間中進(jìn)行的,并且以下概率分布是已知的–每一類的概率分布–類條件概率密度
2025-01-14 02:31
【總結(jié)】課前思考?機(jī)器自動(dòng)識(shí)別分類,能不能避免錯(cuò)分類??怎樣才能減少錯(cuò)誤??不同錯(cuò)誤造成的損失一樣嗎??先驗(yàn)概率,后驗(yàn)概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗(yàn)概率,類概率密度函數(shù),后驗(yàn)
2025-02-06 05:59
【總結(jié)】第五章貝葉斯決策?在前一章中,我們把人與自然界(或社會(huì))的博弈問(wèn)題歸納為決策問(wèn)題,它包含三個(gè)要素:狀態(tài)集;行動(dòng)集;損失函數(shù)。?至今為止,可供決策的信息有:先驗(yàn)信息;試驗(yàn)信息或抽樣信息,其中的關(guān)鍵就是要確定一個(gè)可觀察的隨機(jī)變量X,其概率分布中恰好把它當(dāng)作未知參數(shù)。?對(duì)上述兩種信息的使用情況,形成不同的決策問(wèn)題。(
2025-05-07 01:38
【總結(jié)】貝葉斯估計(jì)及其在抽樣調(diào)查中的應(yīng)用2(Bayes,Thomas)(1702─1761)貝葉斯是英國(guó)數(shù)學(xué)家.1702年生于倫敦;1761年4月17日卒于坦布里奇韋爾斯.貝葉斯是一位自學(xué)成才的數(shù)學(xué)家.曾助理宗教事務(wù),后來(lái)長(zhǎng)期擔(dān)任坦布里奇韋爾斯地方教堂的牧師.1742年,貝葉斯被選為英
2025-02-27 04:54
【總結(jié)】1第四節(jié)2全概率公式和貝葉斯公式主要用于計(jì)算比較復(fù)雜事件的概率,它們實(shí)質(zhì)上是加法公式和乘法公式的綜合運(yùn)用.綜合運(yùn)用加法公式P(A+B)=P(A)+P(B)A、B互不相容乘法公式P(AB)=P(A)P(B|A)P(A)03設(shè)nAAA,,,21?為一個(gè)
2025-08-04 14:06
【總結(jié)】西南財(cái)經(jīng)大學(xué)天府學(xué)院§全概率公式與貝葉斯公式一、全概率公式二、貝葉斯公式1西南財(cái)經(jīng)大學(xué)天府學(xué)院西南財(cái)經(jīng)大學(xué)天府學(xué)院例1有三個(gè)箱子,分別編號(hào)為1,2,3,1號(hào)箱裝有1個(gè)紅球4個(gè)白球,2號(hào)箱裝有2紅3白球,3號(hào)箱裝有3紅球.某人從三箱中任取一箱,從中任意摸出一球,求取得紅球的概率.解:記Ai={球取自i號(hào)箱},
2025-05-03 18:43
【總結(jié)】第2章貝葉斯決策理論?引言?幾種常用的決策規(guī)則?基于最小錯(cuò)誤率的貝葉斯決策?基于最小風(fēng)險(xiǎn)的貝葉斯決策?限定一類錯(cuò)誤率,使另一類錯(cuò)誤率最小?最小最大決策?分類器、判別函數(shù)及決策面?正態(tài)分布時(shí)的統(tǒng)計(jì)決策引言?模式識(shí)別的目的就是要確定某一個(gè)給定的模式樣本屬于哪
2025-03-07 21:51
【總結(jié)】北京第七章貝葉斯分類器機(jī)器學(xué)習(xí)圖形繪制圖片處理圖表設(shè)計(jì)典型案例*貝葉斯決策論1346Contents目錄*25極大似然估計(jì)樸素貝葉斯分類器半樸素貝葉斯分類器貝葉斯網(wǎng)EM算法機(jī)器學(xué)習(xí)
2025-08-16 00:11