【導(dǎo)讀】、幾何平均值的概念。比較大小、證明、求最值和實(shí)際問題。當(dāng)且僅當(dāng)時(shí),式中等號成立?ba當(dāng)且僅當(dāng)時(shí)取等號。答:每批進(jìn)貨120臺,資金夠用。
【總結(jié)】溫故知新1、比較兩實(shí)數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 19:51
【總結(jié)】不等式的性質(zhì)課件不等式的性質(zhì)(1)世界上所有的事物不等是絕對的,相等是相對的。過去我們已經(jīng)接觸過許多不等式的問題,本章我們將較系統(tǒng)地研究有關(guān)不等式的性質(zhì)、證明、解法和應(yīng)用.1.判斷兩個(gè)實(shí)數(shù)大小的充要條件對于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a<b三種關(guān)系中有且僅有一種成立.判斷兩個(gè)實(shí)數(shù)大小的充要條件是:
2024-11-17 11:59
【總結(jié)】一元二次不等式及其解法復(fù)習(xí)::ax2+bx+c=0得根.二次函數(shù):y=ax2+bx+c的圖像.:ax2+bx+c0的解集.a≠0求解一元二次不等式的三步驟:例:解不等式-x2+10x-240解方程x2-10x+24=0得:x1=4,x2=6作出函數(shù)
2024-11-17 05:40
2024-11-17 17:33
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2024-11-09 03:52
【總結(jié)】基本不等式請嘗試用四個(gè)全等的直角三角形拼成一個(gè)“風(fēng)車”圖案?趙爽弦圖a2+b2≥2ab?該結(jié)論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
【總結(jié)】3.4不等式的實(shí)際應(yīng)用學(xué)習(xí)目標(biāo)理.2.重點(diǎn)是不等式的實(shí)際應(yīng)用.3.難點(diǎn)是建立不等式問題模型,解決實(shí)際問題.課堂互動(dòng)講練知能優(yōu)化訓(xùn)練不等式的實(shí)際應(yīng)用課前自主學(xué)案3.4課前自主學(xué)案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-06 16:33
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】不等式的性質(zhì)素材?一.復(fù)習(xí)?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個(gè)實(shí)數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì)
2024-11-18 12:09
【總結(jié)】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
【總結(jié)】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【總結(jié)】第3課時(shí)均值不等式1.均值不等式基礎(chǔ)知識梳理2.常用的幾個(gè)重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2025-07-24 03:54
2025-08-04 10:01
2025-08-04 09:13