【導(dǎo)讀】4.用數(shù)學(xué)歸納法證明1+a+a2+?在點(diǎn)P處切線(xiàn)斜率為k,當(dāng)k=3時(shí)的P點(diǎn)坐標(biāo)為()。A.B.,(1,1)C.(2,8)D.)(81,21-?單調(diào)遞增區(qū)間是()。e,+∞)B.(-∞,1?10.觀察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根據(jù)上述規(guī)律,13+23. 12.已知f′是函數(shù)f的導(dǎo)函數(shù),如果f′是二次函數(shù),f′的圖像開(kāi)口向上,14.在復(fù)平面內(nèi),復(fù)數(shù)21ii?上的最大值,最小值分別是.x處取極值,則?17.若函數(shù)f=x3+x2+mx+1是R上的單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是__________.。18.已知曲線(xiàn)y=f=xn+1與直線(xiàn)x=1交于點(diǎn)P,設(shè)曲線(xiàn)y=f在點(diǎn)P處的切線(xiàn)。與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2020x1+log2020x2+?計(jì)算a1、a2、a3,并猜想an的通項(xiàng)公式;)求證本題滿(mǎn)分.522767.(20???②假設(shè)n=k時(shí)結(jié)論成立,所證不等式等價(jià)為10lnabba???在單調(diào)遞減,在單調(diào)遞增,由此10min()()FtF??