【導(dǎo)讀】如圖,你能否在△ABC中畫出一個圓?作圓的關(guān)鍵是什么?這樣的點I應(yīng)在什么位置?圓心I確定后半徑如何找?例2如圖,在△ABC中,∠ABC=50°,∠ACB=75°“,點O是三角形的內(nèi)心求∠BOC的度數(shù).的外接圓相交于點D.提示:與典型例題2一樣;
【總結(jié)】三角形的內(nèi)切圓高臺縣二中張維忠如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形問題1:作圓的關(guān)鍵是什么?問
2024-11-07 02:32
【總結(jié)】例:如圖為△ABC的內(nèi)切圓,點D,E分別為邊AB,AC上的點,且DE為⊙I的切線,若△ABC的周長為21,BC邊的長為6,則△ADE的周長為( B?。.15B.9C.D.7如圖,在△ABC中,AB=10,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點D是斜邊AB的中點,則tan∠ODA= 2 .如圖,O是△ABC的內(nèi)心,過點O作
2025-07-25 00:01
【總結(jié)】三角形外接圓半徑的求法及應(yīng)用方法一:R=ab/(2h)三角形外接圓的直徑等于兩邊的乘積除以第三邊上的高所得的商。AD是△ABC的高,AE是△ABC的外接圓直徑.求證AB·AC=AE·AD.證:連接AO并延長交圓于點E,連接BE,則∠ABE=90°.∵∠E=∠C,∠ABE=∠ADC=90°
2025-08-05 00:14
【總結(jié)】數(shù)學(xué)來源于生活,應(yīng)用于生活。她會使你聰明,使你陶醉,使你成功。同學(xué)們:讓數(shù)學(xué)成為我們的好朋友吧!李明在一家木料廠上班,工作之余想對廠里的三角形廢料進行加工:要在三角形木料上裁下一塊圓形用料,且使圓的面積最大,他就找我這個數(shù)學(xué)老師幫忙,同學(xué)們,你能幫他確定一下嗎?1.確定圓的條件是什么?1)圓心與半徑
2024-12-01 00:45
【總結(jié)】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC·O,在圓O上任取一點A,過點A畫圓O的切線PO2、如圖,D、E、F在圓O上,分別過點D、E、F作圓O的切線。3條切線兩兩相交于點A、B、C·ODEF.
2024-12-08 04:44
【總結(jié)】北師版九年級下冊第3課時三角形的內(nèi)切圓如圖是一張三角形的鐵皮,工人師傅要從中截下一塊圓形的用料,怎樣才能使截下的圓的面積盡可能大呢?新課導(dǎo)入ABC第二種情況ABC第四種情況第一種情況ABC猜測ABC第三種情況問題:在這塊三角形鐵皮上還能截下更大的
2025-03-12 15:23
【總結(jié)】一、復(fù)習(xí)提問:敘述角平分線的性質(zhì)定理和判定定理在角平分線上的點到這個角的兩邊的距離相等到一個角的兩邊的距離相等的點,在這個角的平分線上提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓,使它和已知三角形的各邊都相切已知:△ABC求作:和△A
2024-12-08 01:56
【總結(jié)】與三角形的內(nèi)切圓有關(guān)的幾個結(jié)論鄭建元(浙江省余姚市實驗學(xué)?!?15400)三角形與其內(nèi)切圓是直線與圓位置關(guān)系的重要內(nèi)容,運用切線、面積等知識可得到一些重要的結(jié)論,特別是當(dāng)三角形是直角三角形時,結(jié)論尤為豐富.如果我們平時解題的時候,不滿足于就題論題,而是向更深的層次去探究題目的內(nèi)在規(guī)律.這樣不僅可以培養(yǎng)創(chuàng)造思維能力,而且可以免受題海之困擾,從而大大提高學(xué)習(xí)效率.例1如圖
2025-06-24 00:28
【總結(jié)】1、三角形(1)了解三角形有關(guān)概念(內(nèi)角、外角、中線、高、角平分線),會畫出任意三角形的角平分線、中線和高,了解三角形的穩(wěn)定性。(2)探索并掌握三角形中位線的性質(zhì)。(3)了解等腰三角形的有關(guān)概念,探索并掌握等腰三角形的性質(zhì)和一個三角形是等腰三角形的
2024-11-19 07:59
【總結(jié)】第六章解直角三角形(復(fù)習(xí)課)教學(xué)目標(biāo):1、增強對本章的基本概念和關(guān)系式的記憶和理解。2、能熟練地運用本章知識解決有關(guān)問題。3、加深對本章的解題方法和解題思路的
2024-11-18 15:49
【總結(jié)】本文格式為Word版,下載可任意編輯 中考數(shù)學(xué)三角形專題總復(fù)習(xí) 二、考試目標(biāo)要求: 1.了解三角形有關(guān)概念(內(nèi)角、外角、中線、高、角平分線),會畫出任意三角形的角平分線、中線和高,了...
2025-04-13 02:37
【總結(jié)】BCA]MNOBCAMNO三角形的內(nèi)切圓教學(xué)目標(biāo):1、通過作圖操作,經(jīng)歷三角形內(nèi)切圓的產(chǎn)生過程;2、通過作圖和探索,體驗并理解三角形內(nèi)切圓的性質(zhì);3、類比三角形內(nèi)切圓與三角形外接圓,進一步理解三角形內(nèi)心和外心所具有的性質(zhì);4、通過引例和例1的教學(xué),培養(yǎng)學(xué)生解決實際問題的能力和應(yīng)用數(shù)學(xué)的意識;
2024-12-04 17:18
【總結(jié)】·思考:如圖為一張三角形鐵皮,如何在它上面截一個面積最大的圓形鐵皮?O動手操作·O三角形內(nèi)切圓
2024-11-28 01:36
【總結(jié)】1、確定圓的條件是什么?2、敘述角平線的性質(zhì)與判定性質(zhì):角平線上的點到這個角的兩邊的距離相等。判定:到這個角的兩邊距離相等的點在這個角的平分線上。3、下圖中△ABC與圓O的關(guān)系?△ABC是圓O的內(nèi)接三角形;圓O是△ABC的外接圓圓心O點叫△ABC的外心ACBO李明在
2024-12-07 15:17
【總結(jié)】魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白
2024-11-27 23:38