【導讀】已知tana=,tanb=,并且a、b均為銳角,
【總結】1函數(shù)的實際應用高淳職業(yè)教育中心校馬振功人生就像這小河,一定會有曲折的,但兩岸都是美麗的風景.2問題探究一、提出問題大約在一千五百年前,大數(shù)學家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問雛兔各幾何?”這四句的意思就是:有若干只雞和兔在同
2025-05-13 01:23
【總結】《兩角和與差的余弦公式》教學設計一、教材地位和作用分析:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線、余弦線和誘導公式等知識的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識基礎,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有重要的支撐作用。本課時主要講授平面內(nèi)兩點間距離公式、兩角和與差的余弦公式以及誘導公式。二、教學目標:1、知識目標
2025-05-11 22:45
【總結】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2025-11-08 19:44
【總結】1兩角和與差的正切安吉縣昌碩高中高一年級備課組2sin)sincoscossin?????????(cos)coscossinsin????????(復習3兩角和的正切公式:?sinαcosβ+cosαsinβcosαcosβ-sinαsinβ
2025-11-01 01:05
【總結】主講老師:余弦公式復習引入?)3045cos(15cos,2330cos,2245cosooooo?????由此我們能否得到初中時我們知道復習引入?30cos45cosoo呢是不是等于?猜想:?)3045cos(15cos,2330
2025-10-31 08:12
【總結】兩角差的余弦公式教學目的:經(jīng)歷用向量數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結構特征,并會應用。教學重點:兩角差的余弦公式結構及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2025-11-29 22:40
【總結】某城市的電視發(fā)射塔建在市郊的一座小山上.如圖所示,在地平面上有一點A,測得A、C兩點間距離約為60米,從A觀測電視發(fā)射塔的視角(∠CAD)為∠DAB=求AD長度.????思考:兩角差的余弦公式探究:如何用任意角α,β的正弦、余弦值表示?cos()???
2025-07-25 16:07
【總結】、余弦、正切公式2020、12、24一、復習:?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導??)cos(??)](cos[???????
2025-11-09 12:17
【總結】兩角和與差的三角函數(shù)正用、逆用、變用
2025-10-28 15:47
【總結】1不用計算器,求的值.1.15°能否寫成兩個特殊角的和或差的形式?2.cos15°=cos(45°-30°)=cos45°-cos30°成立嗎?
2025-11-01 00:54
【總結】1.兩角和與差的正弦、余弦、正切公式C(α-β):cos(α-β)=;C(α+β):cos(α+β)=;S(α+β):sin(α+β)=;
2025-11-01 07:32
【總結】?兩角和與差的正、余弦?(第二個教案)?教學目的:余弦公式,進而推導出兩角和與差的其他三角公式;?,并進行簡單的應用;?;?。?教學重點、難點?重點:兩角差的余弦公式的推導。?難點:兩角和與
2025-08-23 13:43
【總結】不用計算器,求的值.1.15°能否寫成兩個特殊角的和或差的形式?2.cos15°=cos(45°-30°)=cos45°-cos30°成立嗎?
2025-10-31 04:48
【總結】 第2課時 兩角和與差的正弦、余弦、正切公式(二) 兩角和與差的正切公式 名稱 公式 簡記符號 使用條件 兩角和 的正切 tan(α+β)= T(α+β) α,β,...
2025-04-03 03:46
【總結】兩角和與差的余弦公式教案 一.【教學目標】 :理解兩角和與差的余弦公式的推導過程,熟記兩角和與差的余弦公式,運用兩角和與差的余弦公式,解決相關數(shù)學問題。 2能力目標:培養(yǎng)學生嚴密而準確的數(shù)學表達...
2025-04-03 02:41