【總結】baca2+b2=c2ABC圖2—1(1)觀察圖2—1:正方形A中含有個小方格,即A的面積是個單位面積;正方形B中含有個小方格,即B的面積是個單位面積;正方形C中含有個小方格,即C的面積是
2024-11-28 01:30
【總結】探索勾股定理北師大版八年級數(shù)學(上冊)玉溪市新平縣新化中學周健設計玉溪市新平縣新化中學周健制作ABCABC(圖中每個小方格代表一個單位面積)圖1-1圖1-2(1)觀察圖1-1正方形A中含有個小方格,即A的面積是
2024-11-30 08:47
【總結】第1課時勾股定理(1)北師大版八年級上冊第一章勾股定理1探索勾股定理情景導入我們知道,任意三角形的三條邊必須滿足定理:三角形的兩邊之和大于第三邊。對于一些特殊的三角形,是否還存在其他特殊的關系?思考探究,獲取新知,分別測量它們的三條邊,看看三邊長的平方之間有怎么樣的關系?觀察圖形,正方形A
2025-03-13 03:09
【總結】勾股定理的逆定理第1課時勾股定理的逆定理滬科版·八年級數(shù)學下冊狀元成才路狀元成才路新課導入勾股定理如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.提問如果將條件和結論反過來,這個命題還成立嗎?狀元成才路
【總結】2直角三角形第1課時勾股定理及其逆定理北師版八年級數(shù)學下冊新課導入我們學過直角三角形的哪些性質和判定方法?與同伴交流.ABC想一想新課探究(1)直角三角形的兩個銳角有怎樣的關系?為什么?(2)如果一個三角形有兩個角互余,那么這個三角形是直角
2025-03-12 21:17
【總結】勾股定理的逆定理第十七章勾股定理第1課時一、情境引入?據(jù)說,幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個結,然后,用釘子將第1個與第13個結釘在一起,拉緊繩子,再在第4個和第8個結處各釘上一個釘子,如圖。這樣圍成的三角形中,最長邊所對的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【總結】勾股定理的逆定理人教版數(shù)學八年級下冊.重點、互逆定理難點3.能靈活運用勾股定理的逆定理解決實際問題.重點學習目標(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
2024-11-12 18:35
【總結】(第2課時)?股定理,請問勾股定理的內容是什么?據(jù)不完全統(tǒng)計,驗證的方法有400多種,你想得到自己的方法嗎?小組活動:請你利用自己準備的四個全等的直角三角形拼出以斜邊為邊長的正方形.有不同的拼法嗎?
2024-11-30 08:34
【總結】(1)儀征市實驗中學ABC觀察:兩直角邊的平方和等于斜邊的平方cab面積A+面積B=面積Ca2+b2=c2相傳2500年前,古希臘著名數(shù)學家畢達哥拉斯從朋友家的地磚鋪成的地面上找到了直角三角形三邊的關系。探究:如果在網(wǎng)格紙上,畫一個頂點都在格點上的直角三角形;并分別以這個直角三角
2024-11-09 07:31
【總結】2勾股定理的應用知識回顧:1勾股定理的條件和結論分別是什么?2a、b、c分別是直角三角形的三邊,則一定有a2=c2-b2嗎?勾股定理的應用根據(jù)勾股定理,在直角三角形中,已知任意兩條邊長,可以求出第三條邊的長。例1.在Rt?ABC中,∠C=90°
2024-11-06 19:33
【總結】第一章勾股定理1探索勾股定理第1課時探索勾股定理第一章勾股定理A知識要點分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練A知識要點分類練第1課時探索勾股定理知識點1勾股定理1.若一個直角三角形的兩直角邊的長分別為a,b,斜邊長為c,則下列關于a,b,
2025-06-17 21:20
【總結】第1章直角三角形直角三角形的性質和判定(Ⅱ)第1課時學習目標,了解關于勾股定理的一些文化歷史背景,會用面積法來證明勾股定理,體會數(shù)形結合的思想.(重點).(難點)其他星球上是否存在著“人”呢?為了探尋這一點,世界上許多科學家向宇宙發(fā)出了許多信號,如地球上人類的語言、音樂、各種圖形
2024-12-28 00:14
【總結】勾股定理的逆定理活動1:復習與鞏固(1)勾股定理的內容是什么?(2)求以線段a,b為直角邊的直角三角形的斜邊c的長:a=3,b=4;a=8,b=6a=5,b=12.①②③活動2:探究:畫出邊長分別是下列各組
【總結】北師大八年級上冊第一章第一節(jié)123相傳兩千多年前,一次畢達哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關系,同學
2024-11-30 08:16