【總結(jié)】4cm2cm拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm2428424拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm24144124cm1cm拼成的平行四邊形三角形
2024-08-03 23:38
【總結(jié)】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請(qǐng)根據(jù)課本相關(guān)內(nèi)容,快速解決下列問(wèn)題,8分鐘后交流展示你的成果?!疚曳此迹沂崂怼浚ㄒ唬┫嗨迫切?.定義:各角對(duì)應(yīng)________,各邊對(duì)應(yīng)成________的兩個(gè)三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【總結(jié)】人教新課標(biāo)四年級(jí)數(shù)學(xué)下冊(cè)本節(jié)課我們主要來(lái)學(xué)習(xí)三角形的分類,同學(xué)們要知道分類的方法以及各類三角形的特點(diǎn)。各種各樣的三角形“神舟”三角形郵票銳角銳角三角形:三個(gè)角都是銳角的三角形。直角直角三角形:有一個(gè)角是直角的三角形。鈍角鈍角三角形:有一個(gè)角是鈍角的三角形。“流動(dòng)紅旗”有
2024-11-22 04:21
【總結(jié)】三角形定義、有關(guān)概念、邊、角、外角主要線段三角形的角平分線三角形的中線三角形的高分類按邊分不等邊三角形等腰三角形底邊和腰不相等的等腰三角形等邊三角形按角分直角三角形斜三角形銳角三角形鈍角三角形性質(zhì)(一般三角形)邊的關(guān)系三角形兩邊的和大
2024-11-07 02:32
【總結(jié)】如圖,在等腰三角形ABC中,AB=AC.(1)根據(jù)等腰三角形的性質(zhì),能得出什么結(jié)論?BACD(2)請(qǐng)你添加一個(gè)條件,使得△ABC成為等邊三角形.(3)作底邊BC的中線AD,你又能得出什么結(jié)論?并請(qǐng)你說(shuō)明理由.(4)如果AC=5,BC=6,求△ABC的面積.ABCD在直角△ABC中,
2024-11-10 22:20
【總結(jié)】三角形全等的條件(復(fù)習(xí))全等三角形概念及性質(zhì):1:什么是全等三角形?一個(gè)三角形經(jīng)過(guò)哪些變化可以得到它的全等形?2:全等三角形有哪些性質(zhì)?能夠完全重合的兩個(gè)三角形叫做全等三角形。一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形。(1):全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。(2):全等三角形的周長(zhǎng)相等、面積相等。(3)
2024-07-27 00:05
【總結(jié)】三角形全等的判定復(fù)習(xí)課三角形全等的定義及性質(zhì)定義:能夠完全重合的兩個(gè)三角形全等性質(zhì):兩個(gè)全等的三角形的對(duì)應(yīng)邊和對(duì)應(yīng)角分別相等教學(xué)內(nèi)容一、三角形全等的定義二、三角形全等的判斷定理(SAS)(ASA)推論角角邊(AAS)(SSS)4.“HL”定理三、應(yīng)用四、小結(jié)
2024-11-07 01:04
【總結(jié)】銳角三角形直角三角形鈍角三角形——有一個(gè)角是鈍角。三角形按角的分類——三個(gè)角都是銳角?!幸粋€(gè)角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2024-08-10 14:23
【總結(jié)】合作中學(xué)習(xí)學(xué)習(xí)中創(chuàng)新全等三角形復(fù)習(xí)中考總復(fù)習(xí)之--學(xué)習(xí)目標(biāo):通過(guò)概念的復(fù)習(xí)和典型例題評(píng)析,使學(xué)生掌握三角形全等的判定、性質(zhì)及其應(yīng)用。學(xué)習(xí)重點(diǎn):典型例型評(píng)析。學(xué)習(xí)難點(diǎn):學(xué)生綜合能力的提高。全等三角形的性質(zhì):對(duì)應(yīng)邊、對(duì)應(yīng)角相等。全等三角形的判定:知識(shí)點(diǎn)一般三角形全等的判定:
2025-01-12 22:52
【總結(jié)】作業(yè)布置評(píng)價(jià)小結(jié)鞏固練習(xí)講授新課復(fù)習(xí)判定兩個(gè)三角形全等要具備什么條件?
2024-11-09 03:54
【總結(jié)】相似三角形期末復(fù)習(xí)知識(shí)要點(diǎn)+練習(xí)提高萬(wàn)州德澳中學(xué)初三數(shù)學(xué)備課組像這樣,對(duì)于四條線段a、b、c、d,如果其中兩條線段的長(zhǎng)度的比等于另外兩條線段的比,如(或a∶b=c∶d),那么,這四條線段叫做成比例線段,簡(jiǎn)稱比例線段.此時(shí)也稱這四條線段成比例.dcba?要判斷線段是否
2024-08-01 21:07
【總結(jié)】?公理1:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(SSS).公理2:兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(SAS).公理3:兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA).推論:兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS)如圖,要證明△AC
2024-08-25 01:10
【總結(jié)】三角形復(fù)習(xí)題實(shí)驗(yàn)中學(xué)李漢平?22(1)所示,稱“對(duì)頂三角形”,其中,∠A+∠B=∠C+∠D,?利用這個(gè)結(jié)論,完成下列填空.?如圖22題(2),∠A+∠B+∠C+∠D+∠E=??②如圖22題(3),∠A+∠B+
2024-11-22 01:18
【總結(jié)】歡迎您光臨指導(dǎo)折疊中的直角三角形BCADE△ADC≌△ADE∠1=∠2;∠3=∠4=∠C=90°;∠5=∠6;AE=AC;DE=CD你知道多少?線段AD所在的直線(2)圖中有哪些相等的角和相等的線段?(3)對(duì)稱軸是哪條線段所在的直線?(1)你能找出圖中全等的
2025-05-10 00:09