【導讀】如果對于y在C中的任何一個值,就表示y是自變量,x是y的函數(shù)。不是每一個函數(shù)都有反函數(shù);相應(yīng)的映射是一一映射;原函數(shù)與反函數(shù)的定義域與值域互換。足什么條件才有反函數(shù)?內(nèi)單調(diào),那么它是否一定存在反函數(shù)?換言之,如果函數(shù)y=f的圖像上有。y=f在其定義域內(nèi)存在反函數(shù),②求y=2x關(guān)于直線y=-x的對稱直線。
【總結(jié)】三角函數(shù)的圖象與性質(zhì)、余弦函數(shù)的圖象x,對應(yīng)的正弦值(sinx)、余弦值(cosx)是否存在?惟一?問題提出t57301p2???????,角α的正弦線、余弦線分別是什么?P(x,y)OxyMsinα=MPcosα=OM,要直觀、全面了解正、余弦函數(shù)的基本特性,我們應(yīng)從哪個方面
2024-11-12 01:35
【總結(jié)】y=sinx的圖象和性質(zhì)32?x2??2?yO1-1O1BA(O1)(B)所以我們只需要仿照上述方法,取一系列的x的值,找到這些角的正弦線,再把這些正弦線向右平移,使他們的起點分別與x軸上表示的數(shù)的點重合,再用光滑的曲線把這些正弦線的終點連接起來就得到正弦函數(shù)
2024-11-10 01:03
【總結(jié)】函數(shù)y=sinxy=cosx圖形定義域值域最值單調(diào)性奇偶性周期對稱性2?52?2?32??0xy2??1-1xR?xR?[1,1]y??[1,1]y??22xk????時,1maxy?22xk?????時,1miny??2
2024-11-10 12:25
【總結(jié)】正弦函數(shù)圖像的作出以上我們作出了y=sinx,x∈[0,2π]的圖象,因為sin(2kπ+x)=sinx(k∈Z),所以正弦函數(shù)y=sinx在x∈[-2π,0],x∈[2π,4π],x∈[4π,6π]時的圖象與x∈[0,2π]時的形狀完全一樣,只是位置不同。現(xiàn)在把上述圖象沿著x軸平
2024-11-11 21:09
【總結(jié)】對數(shù)函數(shù)圖象與性質(zhì)a10a1圖象性質(zhì)定義域:值域:在(0,+∞)上是函數(shù)在(0,+∞)上是函數(shù)32.521.510.5-0.5-1-1.5-2
2024-11-11 21:10
【總結(jié)】第三課時指、對數(shù)函數(shù)與反函數(shù)對數(shù)函數(shù)及其性質(zhì)問題提出設(shè)a>0,且a≠1為常數(shù),.若以t為自變量可得指數(shù)函數(shù)y=ax,若以s為自變量可得對數(shù)函數(shù)y=logax.這兩個函數(shù)之間的關(guān)系如何進一步進行數(shù)學解釋?tas?知識探究(一):反函數(shù)的概念思考1:設(shè)某物體以3m/s的速度作
2025-08-16 02:22
【總結(jié)】請同學生們回憶一下什么是正弦線?什么是余弦線?什么是正切線xyPOA(1,0)T正弦線:MP余弦線:OM正切線:ATM[0,2?]y-101?2?.....xy=sinx正弦曲線yo1
2024-11-09 09:19
【總結(jié)】1.反函數(shù)定義域A值域C定義域值域確定唯一確定唯一yxyx方法:反解逆運算1.反函數(shù)概念2.求反函數(shù)1.反函數(shù)概念2.求反
2024-11-11 09:01
【總結(jié)】----正弦、余弦、正切函數(shù)圖象三角函數(shù)圖象江蘇省宿豫中學楊亞§、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)y=sinx和余弦函數(shù)y=cosx圖象的畫法1、描點法2、幾何法復習:三角函數(shù)線xyoPMT1A?的終邊-1-111-1
2024-11-10 12:27
【總結(jié)】一、內(nèi)容提要二、基礎(chǔ)練習三、典型例題四、課堂練習五、本課小結(jié)一、內(nèi)容提要1.正弦、余弦、正切函數(shù)的圖象-11yxy=sinxx∈R2ππ-11yxy=cosxx∈R2ππ2.性質(zhì):定義域、值域、周期、奇偶性、單調(diào)性3.函數(shù)
2024-11-10 08:39
【總結(jié)】正弦、余弦函數(shù)的圖象X湖南省衡陽縣一中胡隆衛(wèi)三角函數(shù)三角函數(shù)線正弦函數(shù)余弦函數(shù)正切函數(shù)正切線AT正弦、余弦函數(shù)的圖象yxO-1?PMA(1,0)Tsin?=MPcos?=OMtan?=AT注意:三角函數(shù)線是有向線段!正弦
2024-11-10 08:32
【總結(jié)】互為反函數(shù)的函數(shù)圖象間的關(guān)系一、復習引入1、求反函數(shù)步驟?函數(shù)?互為反函數(shù)1、解(x)2、調(diào)(x,y)3、注定(定義域)解:沒有;因為它不是一一映射構(gòu)成的函數(shù);把定義域改寫為(-∞,0]、[0,+∞)時它有反函數(shù).2、函數(shù)y=2x2-3
2024-11-12 17:31
【總結(jié)】新課標人教版課件系列《高中數(shù)學》必修4《三角函數(shù)的圖像和性質(zhì)》學習目標:(1)利用單位圓中的三角函數(shù)線作出sin,Ryxx??的圖象,明確圖象的形狀;cos,Ryxx??(2)根據(jù)關(guān)系,作出的圖象;(3)用“五點法”作出正弦函數(shù)、余弦函數(shù)的簡圖,并利用
2024-11-11 21:28
2024-11-10 00:49
【總結(jié)】第18講│三角函數(shù)的圖象和性質(zhì)第18講三角函數(shù)的圖象和性質(zhì)第18講│知識梳理知識梳理1.周期函數(shù)(1)周期函數(shù)的定義對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有______________,那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個