freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)復(fù)習(xí)建議p-資料下載頁(yè)

2024-11-09 01:15本頁(yè)面

【導(dǎo)讀】(一)近兩年來(lái)數(shù)學(xué)試題難度加大,綜合性增強(qiáng).(Ⅰ)設(shè),討論的單調(diào)性;(Ⅱ)若對(duì)任意的恒有,求的取值范圍。平面等內(nèi)容仍是近兩數(shù)學(xué)試題的重點(diǎn)和難點(diǎn).例如2020年試題中,以傳統(tǒng)的高等數(shù)學(xué)內(nèi)容為主的就有4題,每個(gè)試驗(yàn)組由4只小白鼠組成,其中2只服用A,另2只。服用B,然后觀察療效。白鼠的只數(shù)比服用B有效的多,就稱該試驗(yàn)組為甲類組。(四).重視向量的應(yīng)用.用代數(shù)方法解決幾何問(wèn)題的過(guò)程更加簡(jiǎn)便,更適用.一種有力的武器.這一層次所涉及的主要行為動(dòng)詞有:描述,說(shuō)明,表達(dá),推測(cè)、想像,比較、掌握、判別,初步應(yīng)用等.處理,能根據(jù)問(wèn)題的條件,尋找與設(shè)計(jì)合理、簡(jiǎn)捷的運(yùn)算途徑;能根據(jù)要求對(duì)數(shù)據(jù)進(jìn)行估計(jì)和近似計(jì)算.字的計(jì)算、估值和近似計(jì)算,對(duì)式子的組合變形與分解變形,像出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;化的思想、特殊與一般的思想以及有限與無(wú)限的思想。踐經(jīng)驗(yàn),使數(shù)學(xué)應(yīng)用問(wèn)題的難度符合考生的水平.

  

【正文】 , 并求出這個(gè)最大值 . (2020年試題 ) c o s 2 c o s 2BCA ?? 平面解析幾何是高中的重要內(nèi)容,而圓錐曲線更是高考重點(diǎn),主要考查圓錐曲線的概念和性質(zhì),直線與圓錐的位置關(guān)系以及求軌跡等 . 注意圓錐曲線的定義和性質(zhì)在解題中的應(yīng)用 ,突出 “ 曲線與方程 ” 這一重點(diǎn) ,加強(qiáng)直線與圓錐曲線的位置關(guān)系問(wèn)題的復(fù)習(xí) . 由于直線與圓錐曲線的位置關(guān)系一直為高考的熱點(diǎn) .這類問(wèn)題常涉及到圓錐曲線的性質(zhì)和直線的基本知識(shí)點(diǎn) 、 線段的中點(diǎn) 、弦長(zhǎng) 、 垂直問(wèn)題 , 分析問(wèn)題時(shí)利用數(shù)形結(jié)合思想 ,重視對(duì)數(shù)學(xué)思想 、 方法進(jìn)行歸納提煉 , 對(duì)稱思想 、 參數(shù)思想 、 轉(zhuǎn)化思想都是解決圓錐曲線問(wèn)題重要思想方法 . 在平面直角坐標(biāo)系 xoy中,有一個(gè)以點(diǎn) 和 為焦點(diǎn),離心率為 的橢圓,設(shè)橢圓在第一象限的部分曲線為 C,動(dòng)點(diǎn) P在 C上, C在 P點(diǎn)處的切線與 x、 y軸的交點(diǎn)分別為 A、 B,且向量 求 ( Ⅰ )點(diǎn) M的軌跡方程; ( Ⅱ ) 的最小值 . (2020年試題 ) 1 (0, 3)F ? 2 (0, 3)F32O M O A O B??OM已知橢圓的中心為坐標(biāo)原點(diǎn) O,焦點(diǎn)在 軸上,斜率為 1且過(guò)橢圓右焦點(diǎn) F的直線交橢圓于 A、 B兩點(diǎn), 與 共線. ( Ⅰ )求橢圓的離心率; ( Ⅱ )設(shè) M為橢圓上任意一點(diǎn) ,且 , 證明 為定值. (2020年試題 ) xO A O B? )1,3( ??a O M O A O B????22 ?? ? 立體幾何是高中數(shù)學(xué)內(nèi)容的重點(diǎn)組成部分 ,是考查學(xué)生的空間想像能力和邏輯推理能力的重要章節(jié) .高考始終把空間直線與直線、直線與平面、平面與平面的平行與垂直的定義、 性質(zhì)與判定、線面間的角與距離的計(jì)算作為考查的重點(diǎn) . 立體幾何綜合題的基本模式是論證推理與計(jì)算相結(jié)合 .解決這種類型的題目對(duì)各種能力具有較高要求 . ① 解題原則是作圖、證明、求解 . ② 學(xué)會(huì)識(shí)圖、理解圖、應(yīng)用圖 .通過(guò)對(duì)復(fù)雜空間圖形直觀圖的觀察和分解,發(fā)現(xiàn)其中的平面圖形或典型的空間圖形 . ③ 注意數(shù)學(xué)中的轉(zhuǎn)化思想的運(yùn)用 A BCDPM 已知四棱錐 P- ABCD的底面為直角梯形, AB∥ DC, 底面 ABCD且 PA=AD=DC= AB=1, M是 PB的中點(diǎn). ( Ⅰ )證明:面 PAD⊥ 面 PCD; ( Ⅱ )求 AC與 PB所成的角; ( Ⅲ )求面 AMC與面 BMC所成二面角的大小 (2020年試題 ) ??? PADA B ,90 ?21如圖 ,、 是互相垂直的異面直線 , MN是它們的公垂線段 。 點(diǎn) A、 B在 上 , C 在 上 , AM=MB=MN。 ( Ⅰ ) 證明 AC NB ( Ⅱ ) 若 ,求 NB與平面 ABC所成角的 余弦值 . (2020年試題 ) 1l 2l1l 2l???? 60AC B 排列、組合、二項(xiàng)式定理和概率這方面的內(nèi)容在近年的高考中增加了很多,特別是有關(guān)概率方面的考題每年都有一個(gè)大題,難度有逐年加大的趨勢(shì)。 應(yīng)用性強(qiáng) ,如統(tǒng)計(jì)問(wèn)題及概率問(wèn)題,都是以實(shí)際問(wèn)題為背景 . 對(duì)運(yùn)用數(shù)學(xué)思想的要求高 ,如解排列、組合問(wèn)題時(shí),需分類討論、分步討論 .以幾何為背景的排列、組合題需用數(shù)形結(jié)合的思想,這種命題特點(diǎn)在以后的高考中仍會(huì)保持下去 . 關(guān)于排列、組合方面試題的特點(diǎn) 綜合性強(qiáng) . 如排列、組合題大多能與集合、數(shù)列、立體幾何等內(nèi)容組合構(gòu)成小型綜合題,使每題涉及的知識(shí)點(diǎn)在兩個(gè)以上 . 有關(guān)概率方面的內(nèi)容,重點(diǎn)掌握隨機(jī)事件的概念 ,等可能事件、互斥事件、獨(dú)立事件的概率 , n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生 k次等五種事件的概率 .熟練掌握離散型隨機(jī)變量的分布列,以及隨機(jī)變量的期望與方差。 9粒種子分種在 3個(gè)坑內(nèi),每坑 3粒,每粒種子發(fā)芽的概率為 ,若一個(gè)坑內(nèi)至少有 1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種,若一個(gè)坑內(nèi)的種子都沒(méi)發(fā)芽,則這個(gè)坑需要補(bǔ)種.假定每個(gè)坑至多補(bǔ)種一次,每補(bǔ)種 1個(gè)坑需 10元,用 ξ 表示補(bǔ)種費(fèi)用,寫(xiě)出 ξ的分布列并求 ξ 的數(shù)學(xué)期望.(精確到 ) 注意概率的內(nèi)容與其他內(nèi)容的綜合應(yīng)用 ,特別是與數(shù)列、不等式的綜合 .
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1