【正文】
2 .But there are only two ways of achieving a sum of 12 with the remaining numbers,namely, and ; the sum is not admissible ,as a number cannot be repeated .So 0 cannot belong to a corner ,it must lie in the middle of some us place it in the middle of the top top row must now read or .Opting for the first possibility ,we now readily plete the magic square; we get the square shown on the left:705246381We could instead have opted for in the top row;in this case ,we simply get a reflection of the above configuration .Or w could put 0 in the middle of some side other than the top row .Tracing through these different possibilities ,we get eight configurations which are all rotations and reflections of the configuration given justifies the claim made.The ‘S’PatternIn the magic square above ,the cells containing the middle five numbers(2,3,4,5 and 6) are seen to form a sharply angled ‘S’ pattern may be put to use .For example ,to construct a magic square using the consecutive even numbers 6,8,10,……,20,22,we start by entering the middle five numbers (10,12,14,16,18) in the ‘S’shape; we get the array shown below (left).Since the magic sum for the square is ,we readily get the remaining result is shown below(right).16206161014181014181212228This method will clearly work for any given set of nine numbers in arithmetic progression .In passing ,I none that when I asked my granddaughter Shivaranjani (in standard 5) to make a magic square with a set of consecutive numbers,she found the ‘S’shape on her own and used it to plete the magic square. 三階幻方 一個3階幻方是一個方形的細胞中含有不同的非負整數(shù),這樣說,在3行中的元素的總和,(也稱為“神奇的總和”)是S,: (Ⅰ) S和數(shù)量都與這樣的:.(Ⅱ)對于任何的9個不同的非負整數(shù)的算術級數(shù)給予收藏,是“基本上”,那么,正是八個方面.下面是一個這樣的例子 和 :4176119712114為了證明,我們的幻方表示如右圖所示:證明(Ⅰ) 神奇的財產(chǎn)給了我們以下關系(每個“行通過中心廣場通過”之一): 由此外,我們得到,從中如下.證明(Ⅱ):如果不失去一般性,我們可以采取數(shù)為0,1,2,3,4,5,6,7和8;因為,如果在算術級數(shù)中最小數(shù)字是多少,和共同的區(qū)別是,那么我們可能減去的數(shù)字,然后除以所產(chǎn)生的數(shù)字.“魔法屬性”保持不變,通過這些轉(zhuǎn)變,并最終獲得了數(shù)字0,1,2,3,4,5,6,7和8.由于這九個數(shù)之和為36,從(Ⅰ),對于每一個數(shù)組,通過及格線的中心廣場,在兩端的號碼必須添加多達8個. ,那就屬于3個不同品系的總和是12(行,列和對角線).撇開0,其余號碼,即12和方法 和 ;總和不予受理, 或 .首先選擇加入的可能性,我們現(xiàn)在很容易完成的幻方,我們可以顯示在左側(cè)的方:705246381我們可以有選擇,而不是在第一行;在這種情況下,跟蹤,我們得到8配置是所有旋轉(zhuǎn)和上述配置的思考.在39。S39。模式在幻方以上,細胞中含有5個號碼(2,3,4,5和6)被認為形成尖銳棱角39。S39。,要構(gòu)建幻方使用偶數(shù)連續(xù)6,8,10,... ...,20,22,我們開始進入中等5號(10,12,14,16,18在39。S39。shape),我們得到的數(shù)組所示(左).既然是為方神奇的總和,(右).16206161014181014181212228,我都沒有,當我問我的孫女Shivaranjani(標準5),使一個連續(xù)數(shù)集幻方,她發(fā)現(xiàn)了她自己S39。shape,并用它來完成幻方.襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節(jié)膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節(jié)蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節(jié)衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁薅蠆袈聿蚇蒂