【總結(jié)】5二次函數(shù)與一元二次方程,體會方程與函數(shù)之間的聯(lián)系.x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實數(shù)根、兩個相等的實數(shù)根和沒有實數(shù)根.x軸交點的橫坐標(biāo).ax2+bx+c=0的求根公式是什么?當(dāng)b2-4ac≥0時,當(dāng)b2-4ac0時,方程無實數(shù)根.aacbbx2
2025-06-15 02:55
【總結(jié)】5二次函數(shù)與一元二次方程【基礎(chǔ)梳理】y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)的關(guān)系拋物線y=ax2+bx+c與x軸的交點的個數(shù)一元二次方程ax2+bx+c=0(a≠0)的根的情況2_______________1_______________0_______
2025-06-12 12:32
2025-06-21 02:27
2025-06-15 03:01
【總結(jié)】第二章二次函數(shù)本專題包括求圖形面積的最值問題、求拋物線形運動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考常考的題型,特別是利潤問題,是近年考查的熱點題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的
2025-06-12 00:36
【總結(jié)】確定二次函數(shù)的表達式第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)習(xí)目標(biāo).(難點).(重點)導(dǎo)入新課復(fù)習(xí)引入y=kx+b(k≠0)有幾個待定系數(shù)?通常需要已知幾個點的坐標(biāo)求出它的表達式??它的一般步驟是什么?2個2個待定系數(shù)法(1)設(shè):(表達式)
2025-06-19 07:25
2025-06-18 00:42
【總結(jié)】第二章二次函數(shù)知識點1用一般式(三點式)確定二次函數(shù)表達式(1,0),(2,0)和(0,2)三點的二次函數(shù)的表達式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點的縱坐標(biāo)為1,且經(jīng)過點(2,5)和(-2,13),求這個二次函數(shù)的表達式.
2025-06-18 00:27
【總結(jié)】4二次函數(shù)的應(yīng)用第1課時【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計算公式,并且用函數(shù)表示這個面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時自變量的值.【自我診斷】
2025-06-12 13:43
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價值.,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.(0)ka??2二次函數(shù)y=a(x-h)頂點坐標(biāo)為(h,k)①當(dāng)a0時,y有最小值k②當(dāng)a0時,y有最大值
2025-06-20 22:57
【總結(jié)】4二次函數(shù)的應(yīng)用第1課時,體會數(shù)學(xué)的模型思想和數(shù)學(xué)應(yīng)用價值.間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識解決實際問題.20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標(biāo)為(-2a244acba?①當(dāng)a0時,y有最小值=②當(dāng)a
2025-06-15 03:00
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時【基礎(chǔ)梳理】(1)引入_______.(2)用含_______的代數(shù)式分別表示銷售單價或銷售收入及銷售量.自變量自變量(3)用含_______的代數(shù)式表示銷售的商品的單件盈利.(4)用函數(shù)及含_______的代數(shù)式分別表示銷售利潤,即___________.(5)根
2025-06-15 02:54
2025-06-14 06:48