【總結(jié)】第1頁共2頁九年級數(shù)學(xué)一元二次方程根的判別式和根與系數(shù)關(guān)系基礎(chǔ)題北師版一、單選題(共10道,每道10分)x2+x+=0的根的情況是()k是實數(shù),那么關(guān)于x的方程x2+(2k+1)x+k-1=0的根的情況是()
2025-08-02 17:40
【總結(jié)】;頂點小說頂點小說
2025-08-11 12:23
【總結(jié)】泗陽縣實驗初級中學(xué)初中數(shù)學(xué)八年級下冊(蘇科版)根的判別式知識回顧?aacbbx242????一般地,對于一元二次方程ax2+bx+c=0(a≠0),當b2-4ac≥0時,它的根是?用公式法解一元二次方程首先要把它化為一般形式,進而確定a、b、c的值,再求出b2-4ac的值
2024-11-09 21:33
【總結(jié)】第2章一元二次方程一元二次方程根的判別式目標突破總結(jié)反思第2章一元二次方程知識目標一元二次方程的判別式知識目標1.通過討論,理解一元二次方程根的判別式,能根據(jù)判別式判斷一元二次方程根的情況.2.在理解根的判別式的情況下,能根據(jù)一元二次方程根的情況去確定未知字母的值或取值范圍.目
2025-06-17 19:06
【總結(jié)】九年級數(shù)學(xué)上冊(HS)
2025-06-14 06:03
【總結(jié)】第二十一章一元二次方程專題2一元二次方程的根的判別式武漢專版·九年級上冊一、判別方程根的情況1.判斷下列說法:①若a≠0,方程ax2+bx+c=0和方程ax2-bx-c=0中至少有一個方程有實數(shù)根;②若(a+c)2≤b2,則關(guān)于x的一元二次方程ax2+bx+c=0必有實數(shù)根;③若b2+4ac>
2025-06-20 08:33
【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階
2025-06-14 04:25
2025-06-14 04:13
【總結(jié)】專題強化(一)一元二次方程的解法及根的判別式
2025-06-16 00:56
【總結(jié)】一元二次方程根的判別式第四章;程根的情況.(4)配方、用直接開平方法解方程.(x+)2=-qx2+px+()2=-q+()21、用配方法解一元二次方程的步驟:(1)把原方程化成x2+px+q=0的形式;(2)移項整理得x2+px=-q;(3)在方程x2+px=-q的兩
2025-06-14 12:02
【總結(jié)】第二十一章一元二次方程*一元二次方程的根與系數(shù)的關(guān)系知識管理學(xué)習(xí)指南歸類探究當堂測評分層作業(yè)學(xué)習(xí)指南★教學(xué)目標★掌握一元二次方程的根與系數(shù)的關(guān)系,并會初步應(yīng)用.★情景問題引入★解下列方程,觀察各方程兩個解的和
2025-06-16 12:04
【總結(jié)】一元二次方程判別式課件制作主講余小芳一元二次方程判別式?一復(fù)習(xí)提問:?1、一元二次方程的標準式是什么??2、一元二次方程的求根公式是什么??想一想:b-4ac的符號與ax+bx+c=0會有關(guān)系嗎??做一做:用求根公式法解下列方程?(1)x-x-2=0(2)x-6x+9
2025-08-16 00:34
【總結(jié)】*專題訓(xùn)練(四)一元二次方程根的判別式和根與系數(shù)的關(guān)系類型1一元二次方程根的判別式1.已知一元二次方程2x2-5x+3=0,則該方程根的情況是()A.有兩個不相等的實數(shù)根B.有兩個相等的實數(shù)根C.兩個根都是自然數(shù)D.無實數(shù)根2.關(guān)于x的一元二次方程(m-2)x2+2x+1=0有實數(shù)根,則m的
2024-11-21 22:10
【總結(jié)】一元二次方程的根與系數(shù)的關(guān)系根的判別式課前參與預(yù)習(xí)內(nèi)容:課本P16-17復(fù)習(xí)回顧1、關(guān)于x的一元二次方程的一般形式:2、)0(02????acbxax的根的判別式表示為當時,方程有兩個不相等的實
2024-12-09 13:15
【總結(jié)】1初中數(shù)學(xué)教學(xué)設(shè)計一元二次方程根的判別式一、教學(xué)內(nèi)容分析“一元二次方程的根的判別式”一節(jié),在《華師大版》的新教材中是作為閱讀材料的。從定理的推導(dǎo)到應(yīng)用都比較簡單。但是它在整個中學(xué)數(shù)學(xué)中占有重要的地位,既可以根據(jù)它來判斷一元二次方程的根的情況,又可以為今后研究不等式,二次三項式,二次函數(shù),二次曲線等奠定基礎(chǔ),并且用它可以解決
2024-11-24 17:28