【總結(jié)】第四章三角形第四節(jié)等腰三角形與直角三角形考點一等腰三角形的判定及性質(zhì)例1(2022·邵陽)如圖所示,在等腰△ABC中,AB=AC,∠A=36°,將△ABC中的∠A沿DE向下翻折,使點A落在點C處.若AE=,則BC的長是.【分析】由折疊可得到AE=
2025-06-21 06:01
【總結(jié)】第一部分夯實基礎(chǔ)提分多第四單元三角形第18課時等腰三角形與直角三角形1.等腰三角形(如圖(1))(1)性質(zhì):①兩底角相等,即∠B=∠C;②兩腰相等,即AB=AC;③是軸對稱圖形,有一條對稱軸,即中線AD;基礎(chǔ)點1等腰三角
2025-06-20 18:40
【總結(jié)】教材同步復(fù)習(xí)第一部分第四章三角形第17講等腰三角形與直角三角形知識要點·歸納知識點一等腰三角形的性質(zhì)與判定概念有兩條邊相等的三角形叫做等腰三角形性質(zhì)(1)兩底角相等,即∠B=∠C;(2)兩腰相等,即AB=AC;(3)是軸對稱圖形,
2025-06-12 12:15
2025-06-19 03:50
【總結(jié)】1第四單元三角形第16課時等腰三角形與直角三角形考點聚焦考點一等腰三角形:有兩邊的三角形叫做等腰三角形,其中的三角形叫做等邊三角形.⑴等腰三角形的兩腰,等腰三角形的兩個底角,簡稱為
2025-06-12 04:41
【總結(jié)】等腰三角形和直角三角形專項練習(xí)題1、選擇題°,底邊上的高為9cm,則腰長為()cm. D.,斜邊上的中線長為3.則直角三角形的面積為(??) ,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,連接CD.下列結(jié)論:①AC+CE=AB;②CD=
2025-03-25 06:57
2025-06-12 04:42
【總結(jié)】第四章三角形全等三角形考點1全等三角形的概念及性質(zhì)陜西考點解讀中考說明:理解全等三角形的概念,能識別全等三角形中的對應(yīng)邊,對應(yīng)角。:能夠完全重合的兩個三角形叫作全等三角形。(1)全等三角形的對應(yīng)邊①相等,全等三角形的對應(yīng)角②相等。(2)全等三角形的對應(yīng)線段(如對應(yīng)角的平分線,對應(yīng)邊上的中線、高)
2025-06-20 14:03
2025-06-20 13:46
【總結(jié)】教材同步復(fù)習(xí)第一部分第四章三角形課時17等腰三角形與直角三角形2知識要點·歸納知識點一等腰三角形的性質(zhì)與判定概念有兩條邊相等的三角形叫做等腰三角形性質(zhì)(1)兩底角相等,即∠B=∠C;(2)兩腰相等,即AB=AC;(3)是軸對稱圖形,有一條對稱軸,即AD所在的直線;
2025-06-17 12:32
【總結(jié)】第四章圖形的認(rèn)識19三角形與全等三角形目標(biāo)方向理解三角形及其內(nèi)角、外角、中線、高線、角平分線的概念;掌握三角形的三邊關(guān)系,三角形的內(nèi)角和定理及其推論;熟練掌握三角形全等的性質(zhì)與判定和三角形全等的證明,理解三角形全等不僅是解決幾何問題的重要工具,而且是中考的核心內(nèi)容.探索并理解三角形與相交線、平行線和其他多邊形之間的內(nèi)在聯(lián)系,在復(fù)習(xí)中逐步
2024-11-30 15:07
【總結(jié)】第2課時等腰三角形與直角三角形,探索并證明等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等;底邊上的高線、中線及頂角平分線重合.探索并掌握等腰三角形的判定定理:有兩個底角相等的三角形是等腰三角形.:等邊三角形的各角都等于60°;探索等邊三角形的判定定理:三個角都相等的三角形(或有一個角是60°
2025-06-15 01:46
【總結(jié)】《PK中考·數(shù)學(xué)》江西專版
2025-06-15 05:36
【總結(jié)】二次函數(shù)的綜合應(yīng)用㈠一、典例精析考點一:二次函數(shù)與方程1.(2011廣東)已知拋物線與x軸有交點.(1)求c的取值范圍;(2)試確定直線y=cx+l經(jīng)過的象限,并說明理由.解:(1)∵拋物線與x軸沒有交點∴⊿<0,即1-2c<0解得c>(2)∵c>∴直線y=x+1隨x的增大而增大,∵b=1∴直線y=x+1經(jīng)過第一、二、三象限2.(2011南京)已知
2025-06-16 01:12
2025-06-15 18:41