【總結(jié)】北師大版九年級下冊數(shù)學一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).(1)列表.(3)連線.(2)描點.?情境導入本節(jié)目標y=x2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.y=x2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)
2025-06-17 12:49
【總結(jié)】第一篇:二次函數(shù)的應(yīng)用教案 第二章二次函數(shù) 二次函數(shù)的應(yīng)用(1) 一、知識點 、教學目標知識與技能: 能夠分析和表示不同背景下實際問題中變量之間的二次函數(shù)關(guān)系,并能夠運用二次函數(shù)的知識解決實...
2025-10-15 21:13
【總結(jié)】北師大版九年級下冊數(shù)學的圖象的頂點坐標是;開口方向是;最值是.y=-2x2+3的圖象可由函數(shù)的圖象向平移個單位得到.y=-3x2的圖象向下平移2個單位可得
2025-06-17 12:45
【總結(jié)】北師大版九年級下冊數(shù)學、對稱軸和頂點坐標.(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?情境導入1.(1)開口:向上,對稱軸:直線x=3,頂點坐標(3,-5)(2)開口:向下,對稱軸:直線x=-1,頂點坐標(-1,0)(3)開口:向上,對稱軸:
2025-06-17 12:42
【總結(jié)】北師大版九年級下冊數(shù)學函數(shù)y=x2y=-x2函數(shù)y=x2和y=-x2的圖象x24-2y=x2y=-x2圖象形狀開口方向?qū)ΨQ軸頂點坐標拋物線拋物線向上向下y軸y軸(O,0)
2025-06-17 23:42
2025-06-17 23:49
【總結(jié)】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點1利用二次函數(shù)求圖形面積的最值20cm,則這個直角三角形的最大面積為(B)cm2cm2cm22.用長8m的鋁合金條制成使窗戶的透光面積最大的矩形窗框(如圖),那么這個窗戶的最大透光面積是(C)A.6425m2
2025-06-18 00:33
2025-06-17 23:45
2025-06-17 23:51
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時【基礎(chǔ)梳理】(1)引入_______.(2)用含_______的代數(shù)式分別表示銷售單價或銷售收入及銷售量.自變量自變量(3)用含_______的代數(shù)式表示銷售的商品的單件盈利.(4)用函數(shù)及含_______的代數(shù)式分別表示銷售利潤,即___________.(5)根
2025-06-12 13:43
2025-06-14 06:48
【總結(jié)】2.二次函數(shù)y=ax2+bx+c的圖象是一條,它的對稱軸是,頂點坐標是.當a0時,拋物線開口向,有最點,函數(shù)有最值,是;當a0時,拋物線開口向
2025-11-08 22:41
【總結(jié)】4二次函數(shù)的應(yīng)用第1課時【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計算公式,并且用函數(shù)表示這個面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時自變量的值.【自我診斷】
【總結(jié)】寄語?不知道并不可怕和有害,任何人都不可能什么都知道,可怕的和有害的是不知道而偽裝知道.九年級數(shù)學(下)第二章二次函數(shù)7.最大面積是多少(1)二次函數(shù)的應(yīng)用?(1).設(shè)矩形的一邊AB=xcm,那么AD邊的長度如何表示??(2).設(shè)矩形的面積為ym2,當x取何值時,y的最大值是多少?何時面積最大
2025-10-28 15:28