【總結(jié)】函數(shù)及其圖象2axy?二次函數(shù)的圖象張素琴什么是二次函數(shù)?一般地,如果cbxaxy???2(),0,,?acba是常數(shù),那么,叫做的二次函數(shù).yx二次函數(shù)圖象的形狀?如的圖象2xy
2024-11-22 04:06
【總結(jié)】2xy?2xy??二次函數(shù)y=±x2的性質(zhì)1.頂點坐標與對稱軸2.位置與開口方向3.增減性與最值拋物線頂點坐標對稱軸位置開口方向增減性最值y=x2y=-x2(0,0)(0,0)y軸y軸在x軸的上方(除頂點外)在x軸的下方
【總結(jié)】k的圖象與性質(zhì)axy2??y=ax2(a≠0)a0a0時,
2024-11-22 02:30
【總結(jié)】二次函數(shù)的圖象和性質(zhì)課時安排:(共4課時)?第一課時:函數(shù)的圖象和性質(zhì)?第二課時:函數(shù)的圖象和性質(zhì)?第三課時:函數(shù)的圖象和性質(zhì)?第四課時:二次函數(shù)的
2025-07-23 03:49
【總結(jié)】第一篇:二次函數(shù)的圖象與性質(zhì)教學(xué)反思 2y=ax+c的圖象與性質(zhì)的教學(xué)反思二次函數(shù) 這節(jié)課是青島版九年級數(shù)學(xué)下冊的一節(jié)探究課。在教學(xué)中我采用了體驗探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手...
2024-10-24 12:30
【總結(jié)】你想畫好函數(shù)的圖象嗎?你想利用圖象的直觀性來解決問題嗎?那么你首先應(yīng)該認識與掌握函數(shù)圖象的三大變換平移對稱伸縮問題1:如何由f(x)=x2的圖象得到下列各函數(shù)的圖象?(1)f(x-1)=(x-1)2(2)f(x+1)=(x+1)2(3)f(x)+1=
2024-11-06 20:15
【總結(jié)】......高中函數(shù)圖象變換一、基本函數(shù)作圖(草圖畫法):1、一次函數(shù):2、二次函數(shù):3、反比例函數(shù):4、指數(shù)函數(shù):5、對數(shù)函數(shù):
2025-03-24 12:16
【總結(jié)】復(fù)習練習二次函數(shù)y=a(x-h)2+k的圖象及其性質(zhì)具體探究內(nèi)容導(dǎo)讀圖象特征1說出下列函數(shù)圖象的開口方向,對稱軸,頂點,最值和增減變化情況:1)y=ax22)y=ax2+c3)y=a(x-h)2將拋物線y=ax2沿y軸方向平移c個單位,得拋物線
2024-11-24 15:42
【總結(jié)】二次函數(shù)y=ax2+bx+c的圖象216212yxx???二次函數(shù)的圖象及其性質(zhì)?510510Oxyx…3456789…3…55…216212yxx???216212yxx???
2024-11-21 04:11
【總結(jié)】二次函數(shù)的圖象和性質(zhì)?在同一坐標系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象.觀察圖象,回答問題?(1)函數(shù)y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點坐標分別是什么?(2)x取哪些值時,函數(shù)y=3(x-1)2的值隨x值的增大而增
【總結(jié)】初中數(shù)學(xué)九年級上冊(蘇科版)鹽城市北蔣實驗學(xué)校九年級數(shù)學(xué)備課組(復(fù)習)課前導(dǎo)學(xué),形如(a,b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù)。其中,x是自變量,a,b,c分別是函數(shù)解析式的二次項系數(shù),一次項系數(shù)和常數(shù)項.y=ax2+bx+cy=a(x+h)2+k的圖像和性質(zhì)
2025-10-10 09:33
【總結(jié)】九年級上冊二次函數(shù)的圖象和性質(zhì)(第2課時)問題1你認為我們應(yīng)該如何研究函數(shù)的圖象和性質(zhì)?2.類比探究二次函數(shù)y=ax2的圖象和性質(zhì)問題2類比一次函數(shù)的研究內(nèi)容和研究方法,畫出二次函數(shù)y=x2的圖象,你能說說它的圖象特征和性質(zhì)嗎?問題3在同一直角
2024-11-21 01:22
【總結(jié)】北師大版九年級下冊數(shù)學(xué)一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).(1)列表.(3)連線.(2)描點.?情境導(dǎo)入本節(jié)目標y=x2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.y=x2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)
2025-06-17 23:49
【總結(jié)】y=ax2+k的圖象與性質(zhì)在同一坐標系內(nèi)畫出函數(shù)y=x2、y=x2+1與y=x2-1的圖象。解:x…-2-1012…y=x2…41014…y=x2+1…52125…y=x2-1…30-103…02246-2-4-2
2024-11-06 17:47
【總結(jié)】北師大版九年級下冊數(shù)學(xué)、對稱軸和頂點坐標.(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?情境導(dǎo)入1.(1)開口:向上,對稱軸:直線x=3,頂點坐標(3,-5)(2)開口:向下,對稱軸:直線x=-1,頂點坐標(-1,0)(3)開口:向上,對稱軸:
2025-06-17 23:45