【正文】
ic neutrinos ==〉 ? SuperK 6. Solar neutrinos ? 7. High energy neutrinos 1. Point source: GRB, AGN, BH, … 2. Diffused neutrinos 8. High energy cosmicmuons 1. Point source: GRB, AGN, BH, … 2. Dark matter 9. Exotics 1. Sterile neutrinos 2. Monopoles, Fractional charged particles, …. LVD+MACRO+KamLAND+ SuperK Precision measurement of mixing parameter ? Fundamental to the Standard Model and beyond ? Similarities point to a Grand unification of leptons and quarks ? Constrain all PMNS matrix elements to 1% ! Probing Unitarity of UPMNS to 1% level ! If we can spend ()B$ for each B/C/superB factories to understand UCKM (~ 12 elements for each factory), why not a superreactor neutrino experiment(~ 3 elements) to understand UPMNS ? Current BESIII Vub 25% 5% Vcd 7% 1% Vcs 16% 1% Vcb 5% 3% Vtd 36% 5% Vts 39% 5% Current Daya Bay II Dm212 5% 1% Dm223 12% 1% sin2q12 10% 1% Sin2q23 20% sin2q13 ? Supernova neutrinos ? Less than 20 events observed so far (2022 Noble prize) ? Assumptions: – Distance: 10 kpc (our Galaxy center) – Energy: 3?1053 erg – L? the same for all types – Tem. amp。 energy ? Many types of events: ? ?e + p ? n + e+, ~ 3000 correlated events ? ?e + 12C ? 13B* + e+, ~ 10100 correlated events ? ?e + 12C ? 11N* + e, ~ 10100 correlated events ? ?x + 12C ??x + 12C*, ~ 600 correlated events ? ?x + p ? ?x + p, single events ? ?e + e ? ?e + e, single events ? ?x + e ??x + e, single events T(?e) = MeV, E(?e) = 11 MeV T(?e) = 5 MeV, E(?e) = 16 MeV T(?x) = 8 MeV, E(?x) = 25 MeV SuperK can not see these correlated events What to do with Supernova neutrinos ? Energy spectra amp。 fluxes of all types of neutrinos – tem. and average energy of neutrinos – Understand Supernovae – neutrino properties: mass, mixing, … – Earth tomography – Neutrino models – … ? Arrival time of all types of neutrinos ? absolute neutrino mass 探測器的概念設(shè)計(jì) ? Neutrino target: ~20kt LS, LAB based 30m(D)?30m(H) ? Oil buffer: 6kt ? Water buffer: 10kt ? PMT: 15000 20” ? Cost: ~ B RMB 可能的地點(diǎn):惠州或海上 據(jù)大亞灣 /海豐 60公里 熱功率 40 GW Technical challenges ? Requirements: – Large detector: 10 kt LS – Energy resolution: 2%/?E ? 2500 ./MeV ? Ongoing Ramp。D: – Low cost, high QE “PMT” ? A new design exist, patent pending, ? Ramp。D contract to be signed with manufacture – transparent LS: 15m ? 25m ? Find out traces which absorb light, remove it from production Ramp。D program: ~ 3 years Useful for many future projects Support already from IHEP Now: 1kt 250 ./MeV 1) 采用透射式光電陰極與反射式光電陰極相結(jié)合 ==〉 提高光陰極的有效面積 ==〉 提高量子效率 : 2)采用微通道板作為電子倍增 ==〉 不阻擋光電子 ==〉 提高收集效率 新型光電倍增管的設(shè)計(jì) :提高光量子效率 Hammamatzu 的 SBA/UBA 光陰極可以得到 ~40% 光量子效率 。 已基本滿足要求 估計(jì)可以提高光量子效率一倍以上 與工業(yè)界合作完成的 5” MCPPMT 該設(shè)計(jì)已申請全球發(fā)明專利 Summary ? Knowing Sin22q13 to 1% level is crucial for the future of the neutrino physics, particularly for the leptonic CP violation ? The Daya Bay experiment, located at an ideal site, will reach a sensitivity of for sin22q13 ? The construction of the Daya Bay experiment is going on well, data taking will start at the end of 2022 ? Daya bay experiment is only the start of major neutrino physics programs in China