【總結(jié)】二次函數(shù)的復(fù)習(xí)一、考試說明的要求:二、復(fù)習(xí)目標(biāo)1、認(rèn)識(shí)二次函數(shù)是常見的簡(jiǎn)單函數(shù)之一,也是刻畫現(xiàn)實(shí)世界變量之間關(guān)系的重要數(shù)學(xué)模型.理解二次函數(shù)的概念,掌握其函數(shù)關(guān)系式以及自變量的取值范圍.2、能正確地描述二次函數(shù)的圖象,能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運(yùn)用這些性質(zhì)解決問題.3、能根據(jù)問題中的
2024-11-28 17:49
【總結(jié)】第二章二次函數(shù)1二次函數(shù)【基礎(chǔ)梳理】二次函數(shù)的定義及相關(guān)概念若兩個(gè)變量x,y之間的對(duì)應(yīng)關(guān)系可以表示成__________(a,b,c為常數(shù),a≠0)的形式,則稱y是x的二次函數(shù).其中__是二次項(xiàng)系數(shù),__是一次項(xiàng)系數(shù),__是常數(shù)項(xiàng).y=ax2+bx+cabc【自我診斷】1.(1)y=
2025-06-21 02:27
【總結(jié)】第二章二次函數(shù)1二次函數(shù)1.探索并歸納二次函數(shù)的定義.2.能夠表示簡(jiǎn)單變量之間的二次函數(shù)關(guān)系.函數(shù)變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky某果園有100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子.
2025-06-15 02:59
2025-06-15 02:53
2025-06-12 12:36
【總結(jié)】即使爬到最高的山上,一次也只能腳踏實(shí)地地邁一步。
2024-12-08 03:09
【總結(jié)】第二章二次函數(shù)知識(shí)點(diǎn)1二次函數(shù)的概念y=ax2+bx+c(a,b,c是常數(shù))是二次函數(shù)的條件是(C)≠0且b≠0≠0且b≠0,c≠0≠0,b,c為任意實(shí)數(shù)2.若y=(m2+m)????2-2??-1是二次函數(shù),則m的值是(D)A.1±2
2025-06-18 00:42
【總結(jié)】25第二章二次函數(shù)§二次函數(shù)所描述的關(guān)系學(xué)習(xí)目標(biāo):..學(xué)習(xí)重點(diǎn):,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn)..學(xué)習(xí)難點(diǎn):經(jīng)歷探索二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn).學(xué)習(xí)方法:討論探索法.學(xué)習(xí)過程:【例1】函數(shù)y=(m+2)
2024-11-30 13:24
【總結(jié)】二次函數(shù)第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)習(xí)目標(biāo).(重點(diǎn))..(難點(diǎn))導(dǎo)入新課情景引入里約奧運(yùn)會(huì)上,哪位奧運(yùn)健兒給你留下了深刻的印象?你能猜出下面表情包是誰嗎?你們是根據(jù)哪些特征猜出的呢?下面來看傅園慧在里約奧運(yùn)會(huì)賽后的采訪視頻,注意前方高能表情包.
2025-06-18 00:31
2025-06-19 06:55
【總結(jié)】二次函數(shù)【二次函數(shù)的定義】(考點(diǎn):二次函數(shù)的二次項(xiàng)系數(shù)不為0,且二次函數(shù)的表達(dá)式必須為整式)1、下列函數(shù)中,是二次函數(shù)的是.①y=x2-4x+1;②y=2x2; ③y=2x2+4x; ④y=-3x;⑤y=-2x-1; ⑥y=mx2+nx+p; ⑦y=錯(cuò)誤!未定義書簽。;
2025-06-23 08:44
【總結(jié)】二次函數(shù)的應(yīng)用第二章學(xué)習(xí)的目的在于應(yīng)用,日常生活中,工農(nóng)業(yè)生產(chǎn)及商業(yè)活動(dòng)中,方案的最優(yōu)化、最值問題,如盈利最大、用料最省、設(shè)計(jì)最佳等都與二次函數(shù)有關(guān)。一、根據(jù)已知函數(shù)的表達(dá)式解決實(shí)際問題:0xyhAB
2024-12-08 14:25
【總結(jié)】九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)回顧與思考?定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù)。?圖象:是一條拋物線。?圖象的特點(diǎn):(1)有開口方向,開口大小。(2)有對(duì)稱軸。(3)有頂點(diǎn)(最低點(diǎn)或最高點(diǎn))。oxyoxy?二次函數(shù)
2024-11-30 08:16
【總結(jié)】第二十六章二次函數(shù)章末測(cè)試(一)總分120分120分鐘農(nóng)安縣合隆中學(xué)徐亞惠一.選擇題(共8小題,每題3分)1.如圖所示是一個(gè)拋物線形橋拱的示意圖,在所給出的平面直角坐標(biāo)系中,當(dāng)水位在AB位置時(shí),水面寬度為10m,此時(shí)水面到橋拱的距離是4m,則拋物線的函數(shù)關(guān)系式為(
2025-01-14 19:45
【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第2課時(shí)最大利潤(rùn)問題課堂達(dá)標(biāo)一、選擇題第2課時(shí)最大利潤(rùn)問題1.若一種服裝的銷售利潤(rùn)y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達(dá)式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00