【總結】à300450600sinacosatana1cota12223332223213333211、2、在直角三角形中,由已知元素求未知元素的過程叫:解直角三角形(1)三邊之間的關系:a2+b2=c2(勾股定理);解直角三
2024-11-24 13:26
【總結】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2024-11-24 17:04
【總結】4解直角三角形第1課時解直角三角形第一章直角三角形的邊角關系提示:點擊進入習題答案顯示67892CCD10B1234見習題見習題見習題D5B11121314見習題見習題見習題見習題1.在直角三角形中,除直角外,共有______個元素,即
2024-12-28 05:55
【總結】第一章直角三角形的邊角關系解直角三角形1課堂講解?解直角三角形2課時流程逐點導講練課堂小結作業(yè)提升(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系(1)三邊之間的關系222cba??
2024-12-28 02:38
【總結】在直角三角形中,除直角外,還有哪些元素?這5個元素之間有什么關系?知道其中哪些元素,可以求出其余的元素?cbaCBA如圖,在Rt△ABC中,∠C為直角,其余5個元素之間有以下關系:(2)銳角之間的關系:∠A+∠B=90
2025-10-10 09:27
【總結】解直角三角形高密市城南中學李宗洲(說課案例)標注點擊每頁幻燈片的圖標,則幻燈片翻頁一教材分析單元知識內容:1直角三角形的邊角關系.2應用勾股定理、Rt△的兩銳角互余及銳角三角函數解直角三角形.3應用解直角三角形的有關知識解決一些簡單的實際問題(包括
2025-11-01 12:43
【總結】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2025-11-01 01:51
【總結】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-21 00:14
【總結】數學(八)下第19章解直角三角形復習與小結南安市梅嶺中學張子源2020春第19章解直角三角形復習與小結?直角三角形的元素?元素之間的關系?兩個重要推論?常用三角函數值?解直角三角形CABbca直角三
2025-10-15 15:48
【總結】ABbac┏C直的角邊三角角關形系解三直角角形知一邊一銳角解直角三角形知兩邊解直角三角形添設輔助線解直角三角形知斜邊一銳角解直角三角形知一直角邊一銳角解直角三角形知兩直角邊解直角三角形知一斜邊一直角邊解直角三角形實際應用
2024-12-08 03:00
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階
2025-06-18 13:06
2025-06-21 03:13
【總結】解直角三角形的說課稿 各位領導老師同學們,大家下午好! 我說課的的題目是解直角三角形,它是第二十五章第三節(jié)內容,我從下面五個方面說課。 第一方面:教材分析 1、本節(jié)的地位作用 《解直角三角形...
2024-12-04 22:53
【總結】精品資源《解直角三角形》基礎測試一填空題(每小題6分,共18分):1.在Rt△ABC中,∠C=90°,a=2,b=3,則cosA= ,sinB= ,tanB= ,cotB= ??;2.直角三角形ABC的面積為24cm2,直角邊AB為6cm,∠A是銳角,則sinA= ??;3.等腰三角形底邊長10cm,周長為36cm,則一底角的余切值為 .
2025-03-25 07:47
【總結】【探究目標】1.目的與要求能綜合運用直角三角形的勾股定理與邊角關系解決簡單的實際問題.2.知識與技能能根據直角三角形中的角角關系、邊邊關系、邊角關系解直角三角形,能運用解直角三角形的知識解決有關的實際問題.3.情感、態(tài)度與價值觀通過解直角三角形的應用,培養(yǎng)學生學數學、用數學的意識和能力,激勵學生多接觸社會、了解生活并熟悉一些生產和生活中的實際事物.【探究指
2025-06-07 19:21