【總結(jié)】練習:?⒈在等差數(shù)列{an}中,a2=-2,a5=54,求a8=_____.?⒉在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8的值為_________.?⒊在等差數(shù)列{an}中,a15=10,a45=90,則a60=__________.??⒋在
2025-11-01 01:56
【總結(jié)】14.等差、等比數(shù)列(二)班級姓名一.選擇題1.已知等差數(shù)列{an}滿足9aa2aa832823???,且an0,則其前10項之和為()(A)-9(B)-11(C)-13(D)-152.在等差數(shù)列{an}中,若S9=18,Sn=2
2025-07-28 15:24
【總結(jié)】等差數(shù)列、等比數(shù)列課時考點4高三數(shù)學備課組考試內(nèi)容:數(shù)列.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.(2)理解等差數(shù)列的概念,
2025-07-25 15:40
【總結(jié)】第4課時等差、等比數(shù)列的應用?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為x
2025-04-30 03:31
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第1課時等差數(shù)列與等比數(shù)列要點·疑點·考點(比)數(shù)列的定義如果一個數(shù)列從第二項起,每一項與它的前一項的差(
2025-08-05 19:28
【總結(jié)】n要點要點·疑點疑點·考點考點n課課前前熱熱身身?n能力能力·思維思維·方法方法?n延伸延伸·拓展拓展n誤誤解解分分析析第1課時等差數(shù)列與等比數(shù)列要點要點·疑點疑點·考點考點(比)數(shù)列的定義如果一
2025-08-16 01:53
【總結(jié)】高二數(shù)學必修五《等比數(shù)列》專項練習題一、選擇題:1.{an}是等比數(shù)列,下面四個命題中真命題的個數(shù)為 ()①{an2}也是等比數(shù)列 ②{can}(c≠0)也是等比數(shù)列③{}也是等比數(shù)列 ④{lnan}也是等比數(shù)列A.4 B.3 C.2 D.12.等比數(shù)列{an}中,已知a9=-2,則此數(shù)列前17項之積為 ()A.
2025-04-04 05:17
【總結(jié)】2020屆高考數(shù)學二輪復習系列課件15《等差數(shù)列、等比數(shù)列》)(1nfmaann???考試背景遞推列:)(1nfmaann???在06-08年的高考中,歷年都有涉及,如(不完全統(tǒng)計):06年:全國理Ⅰ,福建;07年:全國理Ⅰ,理Ⅱ;08年:全國理Ⅱ.一、基礎知識3.
2025-11-02 02:52
【總結(jié)】等差、等比數(shù)列練習一、選擇題1、等差數(shù)列中,,那么()A.B.C.D.2、已知等差數(shù)列,,那么這個數(shù)列的前項和()B.有最小值且是分數(shù)C.有最大值且是整數(shù)D.有最大值且是分數(shù)3、已知等差數(shù)列的公差,,那么A.80 B.12
2025-06-24 15:17
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-16 01:47
【總結(jié)】等差數(shù)列與等比數(shù)列總結(jié)一、等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用小寫字母d表示;等差中項,如果,那么A叫做a與b的等差中項;如果三個數(shù)成等差數(shù)列,那么等差中項等于另兩項的算術平均數(shù);等差數(shù)列的通項公式:;等差數(shù)列的遞推公式:;等差數(shù)列的前n項和公式:===
2025-06-29 15:47
【總結(jié)】13.等差、等比數(shù)列(一)班級姓名一.選擇題{an}滿足a1=2,an+1-an+1=0,(n∈N﹡),則此數(shù)列的通項an等于()(A)n2+1(B)n+1(C)1-n(D)3-n{an}是公比q≠1的等比數(shù)列,則
2025-07-24 14:29
【總結(jié)】練習:設正項數(shù)列{an}的前n項和為Sn,且存在正數(shù)t,使得對所有正整數(shù)n,t與an的等差中項和t與Sn的等比中項相等.求證:數(shù)列{}為等差數(shù)列,并求{an}的通項公式及前n項和.nS等差數(shù)列與等比數(shù)列的類比????.,,11nnnTnbqbb項的積的前求該數(shù)
2025-05-03 02:44
【總結(jié)】1知識概括數(shù)列問題的綜合性與靈活性說明競賽輔導-數(shù)列(一)等差數(shù)列與等比數(shù)列2等差數(shù)列、等比數(shù)列是兩個最基本的數(shù)列.等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項與前一項的差an-an-1為常數(shù)d(d為公差)數(shù)列{an}的后一項與前一項的
2025-02-22 00:53
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第3課時等差、等比數(shù)列的運用要點·疑點·考點n項和的最值設Sn是{an}的前n項和,則{an}為等差數(shù)列
2025-07-25 15:39