【總結(jié)】練習(xí):?⒈在等差數(shù)列{an}中,a2=-2,a5=54,求a8=_____.?⒉在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8的值為_________.?⒊在等差數(shù)列{an}中,a15=10,a45=90,則a60=__________.??⒋在
2024-11-10 01:56
【總結(jié)】14.等差、等比數(shù)列(二)班級(jí)姓名一.選擇題1.已知等差數(shù)列{an}滿足9aa2aa832823???,且an0,則其前10項(xiàng)之和為()(A)-9(B)-11(C)-13(D)-152.在等差數(shù)列{an}中,若S9=18,Sn=2
2025-07-28 15:24
【總結(jié)】等差數(shù)列、等比數(shù)列課時(shí)考點(diǎn)4高三數(shù)學(xué)備課組考試內(nèi)容:數(shù)列.等差數(shù)列及其通項(xiàng)公式.等差數(shù)列前n項(xiàng)和公式.等比數(shù)列及其通項(xiàng)公式.等比數(shù)列前n項(xiàng)和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).(2)理解等差數(shù)列的概念,
2025-07-25 15:40
【總結(jié)】第4課時(shí)等差、等比數(shù)列的應(yīng)用?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點(diǎn)·疑點(diǎn)·考點(diǎn)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,存期為x
2025-04-30 03:31
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第1課時(shí)等差數(shù)列與等比數(shù)列要點(diǎn)·疑點(diǎn)·考點(diǎn)(比)數(shù)列的定義如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差(
2024-08-14 19:28
【總結(jié)】n要點(diǎn)要點(diǎn)·疑點(diǎn)疑點(diǎn)·考點(diǎn)考點(diǎn)n課課前前熱熱身身?n能力能力·思維思維·方法方法?n延伸延伸·拓展拓展n誤誤解解分分析析第1課時(shí)等差數(shù)列與等比數(shù)列要點(diǎn)要點(diǎn)·疑點(diǎn)疑點(diǎn)·考點(diǎn)考點(diǎn)(比)數(shù)列的定義如果一
2024-08-25 01:53
【總結(jié)】高二數(shù)學(xué)必修五《等比數(shù)列》專項(xiàng)練習(xí)題一、選擇題:1.{an}是等比數(shù)列,下面四個(gè)命題中真命題的個(gè)數(shù)為 ()①{an2}也是等比數(shù)列 ②{can}(c≠0)也是等比數(shù)列③{}也是等比數(shù)列 ④{lnan}也是等比數(shù)列A.4 B.3 C.2 D.12.等比數(shù)列{an}中,已知a9=-2,則此數(shù)列前17項(xiàng)之積為 ()A.
2025-04-04 05:17
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件15《等差數(shù)列、等比數(shù)列》)(1nfmaann???考試背景遞推列:)(1nfmaann???在06-08年的高考中,歷年都有涉及,如(不完全統(tǒng)計(jì)):06年:全國(guó)理Ⅰ,福建;07年:全國(guó)理Ⅰ,理Ⅱ;08年:全國(guó)理Ⅱ.一、基礎(chǔ)知識(shí)3.
2024-11-11 02:52
【總結(jié)】等差、等比數(shù)列練習(xí)一、選擇題1、等差數(shù)列中,,那么()A.B.C.D.2、已知等差數(shù)列,,那么這個(gè)數(shù)列的前項(xiàng)和()B.有最小值且是分?jǐn)?shù)C.有最大值且是整數(shù)D.有最大值且是分?jǐn)?shù)3、已知等差數(shù)列的公差,,那么A.80 B.12
2025-06-24 15:17
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時(shí)等差、等比數(shù)列的通項(xiàng)及求和公式要點(diǎn)·疑點(diǎn)·考點(diǎn)(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2024-08-25 01:47
【總結(jié)】等差數(shù)列與等比數(shù)列總結(jié)一、等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用小寫字母d表示;等差中項(xiàng),如果,那么A叫做a與b的等差中項(xiàng);如果三個(gè)數(shù)成等差數(shù)列,那么等差中項(xiàng)等于另兩項(xiàng)的算術(shù)平均數(shù);等差數(shù)列的通項(xiàng)公式:;等差數(shù)列的遞推公式:;等差數(shù)列的前n項(xiàng)和公式:===
2025-06-29 15:47
【總結(jié)】13.等差、等比數(shù)列(一)班級(jí)姓名一.選擇題{an}滿足a1=2,an+1-an+1=0,(n∈N﹡),則此數(shù)列的通項(xiàng)an等于()(A)n2+1(B)n+1(C)1-n(D)3-n{an}是公比q≠1的等比數(shù)列,則
2025-07-24 14:29
【總結(jié)】練習(xí):設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且存在正數(shù)t,使得對(duì)所有正整數(shù)n,t與an的等差中項(xiàng)和t與Sn的等比中項(xiàng)相等.求證:數(shù)列{}為等差數(shù)列,并求{an}的通項(xiàng)公式及前n項(xiàng)和.nS等差數(shù)列與等比數(shù)列的類比????.,,11nnnTnbqbb項(xiàng)的積的前求該數(shù)
2025-05-03 02:44
【總結(jié)】1知識(shí)概括數(shù)列問題的綜合性與靈活性說明競(jìng)賽輔導(dǎo)-數(shù)列(一)等差數(shù)列與等比數(shù)列2等差數(shù)列、等比數(shù)列是兩個(gè)最基本的數(shù)列.等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的差an-an-1為常數(shù)d(d為公差)數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的
2025-02-22 00:53
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第3課時(shí)等差、等比數(shù)列的運(yùn)用要點(diǎn)·疑點(diǎn)·考點(diǎn)n項(xiàng)和的最值設(shè)Sn是{an}的前n項(xiàng)和,則{an}為等差數(shù)列
2025-07-25 15:39