【總結(jié)】奇偶性第二課時函數(shù)奇偶性的性質(zhì)問題提出、偶函數(shù)的定義分別是什么?、圖象分別有何特征??知識探究(一)思考1:是否存在函數(shù)f(x)既是奇函數(shù)又是偶函數(shù)?若存在,這樣的函數(shù)有何特征?f(x)=0思考2:一個函數(shù)就奇偶性而言有哪幾種可能情形?思考3:若f(x)是定
2025-11-02 09:02
【總結(jié)】)sin(????xAyXyoXsin()yAx????sinyx?例.用五點法畫出當(dāng)x∈[0,2π]時下列函數(shù)圖象:解:xsinx2sinx1sinx202??32?2?01-100020-20012012?0y=2sinx1y
2025-11-03 01:38
【總結(jié)】數(shù)學(xué):正弦函數(shù)的圖像和性質(zhì)(第二課時)課件ppt(新人教A版必修四)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx
2025-11-01 12:25
2025-10-31 09:22
2025-08-01 17:15
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)甘肅省民勤縣第一中學(xué)李清華1.sinα、cosα、tanα的幾何意義.oxy11PMAT正弦線MP余弦線
2025-11-03 01:35
【總結(jié)】指數(shù)函數(shù)及其性質(zhì)一、指數(shù)函數(shù)一般地,函數(shù)y=ax(a>0,且a≠1)叫做指數(shù)函數(shù)(1)形如:y=ax(2)a>0,且a≠1二、作函數(shù)圖象xxxxyyyy54232??????????二、作函數(shù)圖象xxx
2025-11-01 08:34
【總結(jié)】第二章基本初等函數(shù)復(fù)習(xí)課如果a0,a?1,M0,N0有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa??????),()
2025-11-02 21:10
【總結(jié)】第5節(jié)三角函數(shù)的性質(zhì)(對應(yīng)學(xué)生用書第52頁)(對應(yīng)學(xué)生用書第52~53頁)1.周期函數(shù)對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個值時,都有f(x+T)=f(x
2025-11-02 21:28
【總結(jié)】y=sinx的圖象和性質(zhì)32?x2??2?yO1-1O1BA(O1)(B)所以我們只需要仿照上述方法,取一系列的x的值,找到這些角的正弦線,再把這些正弦線向右平移,使他們的起點分別與x軸上表示的數(shù)的點重合,再用光滑的曲線把這些正弦線的終點連接起來就得到正弦函數(shù)
2025-11-01 01:03
【總結(jié)】函數(shù)y=sinxy=cosx圖形定義域值域最值單調(diào)性奇偶性周期對稱性2?52?2?32??0xy2??1-1xR?xR?[1,1]y??[1,1]y??22xk????時,1maxy?22xk?????時,1miny??2
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修1《對數(shù)函數(shù)的性質(zhì)與應(yīng)用》教學(xué)目標(biāo)?掌握對數(shù)函數(shù)的圖象和性質(zhì)及其運用,利用性質(zhì)解決一些實際問題;理解反函數(shù)的概念,了解互為反函數(shù)的圖象關(guān)于直線y=x對稱。?教學(xué)重點:對數(shù)函數(shù)的定義、圖象和性質(zhì)。對數(shù)函數(shù)圖象和性質(zhì)的應(yīng)用。?教學(xué)難點:對數(shù)函數(shù)圖象
【總結(jié)】函數(shù)的基本性質(zhì)觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:1、觀察這三個圖象,你能說出圖象的特征嗎?2、隨x的增大,y的值有什么變化?單調(diào)性與最大(小)值請觀察函數(shù)y=x2與y=x3圖象,回答下列問題:1、當(dāng)x∈[0,+∞),x增大時,圖(1)中的y值;圖(2)中的
2025-08-05 18:17
【總結(jié)】正弦函數(shù)圖像的作出以上我們作出了y=sinx,x∈[0,2π]的圖象,因為sin(2kπ+x)=sinx(k∈Z),所以正弦函數(shù)y=sinx在x∈[-2π,0],x∈[2π,4π],x∈[4π,6π]時的圖象與x∈[0,2π]時的形狀完全一樣,只是位置不同?,F(xiàn)在把上述圖象沿著x軸平
2025-11-02 21:09
【總結(jié)】對數(shù)函數(shù)的圖象與性質(zhì)(2)1.觀察1.觀察2.思考該函數(shù)既不是冪函數(shù),也不是對數(shù)函數(shù);既不是兩個函數(shù)的和函數(shù),也不是兩個函數(shù)的積函數(shù).該函數(shù)既不是冪函數(shù),也不是對數(shù)函數(shù);既不是兩個函數(shù)的和函數(shù),也不是兩個函數(shù)的積函數(shù).3.討論該函數(shù)可看作在冪函數(shù)的自變量t的位置上
2025-11-02 06:00