【總結(jié)】第一輪復(fù)習(xí):不等式——解分式不等式秭歸縣屈原高中張鴻斌解分式不等式的關(guān)鍵就是如何等價(jià)轉(zhuǎn)化(化歸)所給不等式!復(fù)習(xí)指導(dǎo)例1:解不等式所以原不等式的解集為:???+?--???+
2024-11-09 06:39
【總結(jié)】指數(shù)式和對(duì)數(shù)式不等式的解法新疆奎屯市一中王新敞有理式、根式不等式的解法-------復(fù)習(xí)其解集為:想一想:若a=0時(shí),上不等式的解集如何?-2-112344321-1-2O1.2.
2024-11-09 13:24
【總結(jié)】一、常見不等式1、一元一次不等式的法2、絕對(duì)值不等式x<-a或x>a-a<x<a|x|<a(a>0)|x|>a(a>0)ax>b或ax<b3、一元二次不等式的解法ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)
2024-11-06 13:39
【總結(jié)】指數(shù)式和對(duì)數(shù)式不等式的解法新疆奎屯市一中王新敞有理式、根式不等式的解法-復(fù)習(xí))0....(??abax其解集為:)0.....(|????????aabxx想一想:若a=0時(shí),上不等式的解集如何?)0.....(|????????aabxx0652???xx-2
2025-08-15 21:44
【總結(jié)】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【總結(jié)】絕對(duì)值不等式課堂練習(xí):解不等式|3x-4|≤19類型一:或a0型延伸:例1解不等式|x2-5x+5|1?解:原不等式可轉(zhuǎn)化為-1x2-5x+51
2024-11-09 12:20
【總結(jié)】數(shù)學(xué)解題絕招1一、方法引入:1.數(shù)形結(jié)合法:(1)若f(x)=ax+b,x∈[α,β],則:f(x)0恒成立f(x)0恒成立
2025-07-26 12:19
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國(guó)語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級(jí)復(fù)習(xí)課回顧·知識(shí)一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識(shí):含
2024-10-12 13:38
【總結(jié)】認(rèn)識(shí)不等式授課教師李小波華東師大版七年級(jí)下冊(cè)你能決定嗎?問題:三年級(jí)四班有27名共青團(tuán)員去忠山公園進(jìn)行活動(dòng).公園票價(jià)是:每人5元;一次購票滿30張,每張票可少收1元.當(dāng)團(tuán)支部書記王小華準(zhǔn)備好零錢到售票處買27張票時(shí),有同學(xué)提議買30張票合算些.同學(xué)們議論紛紛,遲遲沒作決定.
2024-11-09 05:14
【總結(jié)】不等式的性質(zhì)?學(xué)習(xí)目標(biāo):?.?.?.?一.復(fù)習(xí)?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)
2024-10-19 08:40
【總結(jié)】無理不等式的解法基本概念1、無理不等式:2、無理不等式的類型:根號(hào)下含有未知數(shù)的不等式。根式不等式的解法-------例1解不等式解:原不等式可化為根據(jù)根式的意義及不等式的性質(zhì),得解這個(gè)不等式組,得所以,原不等式的解集為⊙⊙●根式不等式的解法-------類型(1)
2024-11-10 22:31
【總結(jié)】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(zhì)(3條):?1)不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向____.?2)不等式兩邊都乘以(或除以)同一個(gè)
2025-08-05 01:06
【總結(jié)】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項(xiàng)法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2024-10-19 08:39
【總結(jié)】數(shù)列與不等式舉例(放縮法)1、構(gòu)造等差數(shù)列,完成放縮。例1:已知數(shù)列,滿足,。(1)證明:;(2)設(shè)為數(shù)列的前項(xiàng)和,證明:。分析:(1),可證是單調(diào)減少的,即;,猜測(cè)應(yīng)放大為一個(gè)等差數(shù)列,公差為。將化為,即證。(2)由(1)得,所以。兩邊平方得,猜想放大為一個(gè)等差數(shù)列,公差為2。將轉(zhuǎn)化為只需證。練習(xí):1、(2015學(xué)年第一學(xué)期諸暨期末)已
2025-06-25 01:55
【總結(jié)】第六章:不等式(2)期中復(fù)習(xí):不等式的解法axb?a0,x;a0)(x-a)(x-b)b或xa)----++++-g(x)f(x)&l
2024-11-03 16:20