【總結(jié)】Chapter4(4),大數(shù)定理與中心極限定理,,,,,教學(xué)要求:,了解切比雪夫不等式;,2.了解切比雪夫定理和伯努利定理;,了解林德伯格-列維定理(獨(dú)立同分布的中心極限定理)和棣莫佛-拉普拉斯定理(...
2024-11-17 00:12
【總結(jié)】第四章隨機(jī)變量序列的極限分布,二項(xiàng)分布律的泊松定理,用EXCEL計(jì)算的結(jié)果,獨(dú)立隨機(jī)變量序列累加和的中心極限定理,中心極限定理,,解:,,解:,解:,,這時(shí),,D-L定理的應(yīng)用,解:,,解:,根據(jù)中心...
【總結(jié)】§4.2中心極限定理,定理1獨(dú)立同分布的中心極限定理,設(shè)隨機(jī)變量序列,相互獨(dú)立,,服從同一分布,且有期望和方差:,則對(duì)于任意實(shí)數(shù)x,,注記,則Yn為,的標(biāo)準(zhǔn)化隨機(jī)變量,即n足夠大時(shí),Yn的分布函數(shù)近似...
【總結(jié)】引言迄今為止,人們已發(fā)現(xiàn)很多大數(shù)定律(lawsoflargenumbers),所謂大數(shù)定律,簡單地說,就是大量數(shù)目的隨機(jī)變量所呈現(xiàn)出的規(guī)律,這種規(guī)律一般用隨機(jī)變量序列的某種收斂性來刻劃。本章僅介紹幾個(gè)最基本的大數(shù)定律。大量隨機(jī)現(xiàn)象的平均結(jié)果實(shí)際上是與各個(gè)個(gè)別隨機(jī)現(xiàn)象的特征無關(guān),并且?guī)缀醪辉偈请S機(jī)的了
2025-01-22 00:51
【總結(jié)】1有意正數(shù)證明對(duì)任且獨(dú)立同分布設(shè)隨機(jī)變量??,,2,1,)(,0)(,,,,,221??????kXDXEXXXkkn解.11lim212???????????????nkknXnP是相互獨(dú)立的,因?yàn)??,,,,21nXXX也是相互獨(dú)立的,所以??,,
2025-05-11 17:20
【總結(jié)】第五章大數(shù)定律及中心極限定理習(xí)題課二、主要內(nèi)容三、典型例題一、重點(diǎn)與難點(diǎn)一、重點(diǎn)與難點(diǎn)中心極限定理及其運(yùn)用.證明隨機(jī)變量服從大數(shù)定律.大數(shù)定律二、主要內(nèi)容中心極限定理定理一定理二定理三定理一的另一種表示定理一
2025-01-04 01:29
【總結(jié)】題目:中心極限定理及意義課程名稱:概率論與數(shù)理統(tǒng)計(jì)專業(yè)班級(jí):成員組成:聯(lián)系方式:2012年5月25日摘要:本文從隨機(jī)變量序列的各種收斂與他們的關(guān)系談起,通過對(duì)概率經(jīng)典定理——中心極限定理在獨(dú)立同分布和
2025-01-17 22:41
【總結(jié)】數(shù)字特征與極限定理在前面的課程中,我們討論了隨機(jī)變量及其分布,如果知道了隨機(jī)變量X的概率分布,那么X的全部概率特征也就知道了.f(x)xoxP(x)o然而,在實(shí)際問題中,概率分布一般是較難確定的.而在一些實(shí)際應(yīng)用中,人們并不需要知道隨機(jī)變量的一切概率性質(zhì),只要知道它的某些數(shù)字特
2025-08-23 15:06
【總結(jié)】1Lebesgue積分的極限定理nff若每個(gè)都可積,則是否可積?已接觸的例子?在Riemann積分或Lebesgue積分框架下考慮問題:在Riemann積分框架下,要附加很強(qiáng)條件,使得積分與極限可以交換次序,而在Lebesgue積分框架下,條件很弱!??nf.f設(shè)是函數(shù)列且按照某種意義收斂到fn
2025-01-19 09:29
【總結(jié)】下回停一、問題的提出二、中心極限定理第二節(jié)中心極限定理一、問題的提出由上一節(jié)大數(shù)定理,我們得知滿足一定條件的隨機(jī)變量序列的算數(shù)平均值依概率收斂,但我們無法得知其收斂的速度,本節(jié)的中心極限定理可以解決這個(gè)問題.在實(shí)際中,人們發(fā)現(xiàn)n個(gè)相互獨(dú)立同分布
2025-04-29 12:14
【總結(jié)】莊文忠副教授世新大學(xué)行政管理學(xué)系2020/11/4SPSS之應(yīng)用(莊文忠副教授)1中央極限定理的驗(yàn)證課程大綱2020/11/4SPSS之應(yīng)用(莊文忠副教授)2?抽樣與抽樣分配?中央極限定理的意涵?重復(fù)隨機(jī)抽樣(n=25,n=100,n=400)?樣本平均數(shù)的分布?樣本平均數(shù)的平均數(shù)與母體平
2024-09-29 16:26
【總結(jié)】教學(xué)目的:;,著重講解用正態(tài)分布計(jì)算其它分布的方法;教學(xué)內(nèi)容:第四章,§第十六講中心極限定理中心極限定理:概率論中有關(guān)隨機(jī)變量的和的極限分布是正態(tài)分布的系列定理。設(shè)隨機(jī)變量序列12,,,,nXXX相互獨(dú)立,且有期望和方差:2(
2025-05-12 18:47
【總結(jié)】信息與計(jì)算科學(xué)《概率論與數(shù)理統(tǒng)計(jì)》教案第四章極限定理一教學(xué)目標(biāo)與要求掌握幾個(gè)大數(shù)定律(馬爾可夫大數(shù)定律,切比曉夫大數(shù)定律,Bernoulli大數(shù)定律,辛欽大數(shù)定律)。二重點(diǎn)和難點(diǎn)重點(diǎn):幾個(gè)大數(shù)定律的內(nèi)容,中心極限定理的內(nèi)容及其應(yīng)用.難點(diǎn):中心極限定理的應(yīng)用三教學(xué)內(nèi)容§一.依分布收斂定義:隨機(jī)變量序列,對(duì)應(yīng)的分布函數(shù)列是,如果存在分
2025-08-17 13:11
【總結(jié)】中心極限定理-1-本資料來源中心極限定理-2-中心極限定理(CentralLimitTheorem)中心極限定理-3-DefineMeasureAnalyzeImproveControlStep8-Data分析Step9-VitalFewX’的選定?多變量研究
2025-02-26 23:01
【總結(jié)】及中心極限定理定理一設(shè)隨機(jī)變量X1,X2,…,Xn,…相互獨(dú)立,且具有相同的數(shù)學(xué)期望和方差:E(Xk)=?,D(Xk)=?2(k=1,2,…)作前n個(gè)隨機(jī)變量的算術(shù)平均???nkknXnY11}|{|lim??????nnYP(1.1
2025-01-22 07:08