freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

福建省泉州科技中學(xué)20xx-20xx學(xué)年高二下學(xué)期第一次月考數(shù)學(xué)試題-【含答案】-資料下載頁(yè)

2025-04-03 02:20本頁(yè)面
  

【正文】 當(dāng)a1時(shí),令f39。(x)=0,得x=ln2(a+1),當(dāng)xln2(a+1)時(shí),f39。(x)0,f(x)在(∞,ln2(a+1))上單調(diào)遞減;當(dāng)xln2(a+1)時(shí),f39。(x)0,f(x)在(ln2(a+1),+∞)上單調(diào)遞增;(2)設(shè)g(x)=f(x)12x22(a+1)2=ex12x22(a+1)x2(a+1)2+32=ex12[x+2(a+1)]2+32,即g(x)≥0對(duì)x∈[0,+∞)恒成立,g39。(x)=ex(x+2a+2),令h(x)=g39。(x),h39。(x)=ex1≥0對(duì)x∈[0,+∞)恒成立,h(x)在[0,+∞)上單調(diào)遞增,∴h(x)≥h(0)=2a1,?①當(dāng)2a1≥0,即a≤12時(shí),h(x)=g39。(x)≥0,g(x)在[0,+∞)上單調(diào)遞增,∴g(x)min=g(0)=522(a+1)2≥0,∴152≤a≤1+52,又a≤12,∴152≤a≤12,?②當(dāng)2a10,即a12時(shí),則存在唯一的x0∈(0,+∞)使h(x0)=0,ex0x02(a+1)=0,當(dāng)x∈(0,x0)時(shí),h(x)=g39。(x)0,當(dāng)x∈(x0,+∞)時(shí),h(x)=g39。(x)0,即x∈(0,x0)時(shí),g(x)單調(diào)遞減,x∈(x0,+∞)時(shí),g(x)單調(diào)遞增,故g(x)min=g(x0)=ex012e2x0+32≥0,解得0ex0≤3,0x0≤ln3,又2(a+1)=ex0x0,而exx在[0,+∞)上單調(diào)遞增,∴12(a+1)≤3ln3,解得12a≤1ln32.綜上,實(shí)數(shù)a的取值范圍為[152,1ln32].22.【答案】解:(1)f(x)=h(x)g(x)=ex2xlnxex+ax2+ax=ax2+(a2)xlnx(x0),①f39。(x)=2ax+(a2)1x=2ax2+(a2)x1x=(2x+1)(ax1)x(x0),(i)當(dāng)a≤0時(shí),f39。(x)0,函數(shù)f(x)在(0,+∞)上遞減;(ii)當(dāng)a0時(shí),令f39。(x)0,解得x1a;令f39。(x)0,解得0x1a,∴函數(shù)f(x)在(0,1a)遞減,在(1a,+∞)遞增;綜上,當(dāng)a≤0時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞減;當(dāng)a0時(shí),函數(shù)f(x)在(0,1a)上單調(diào)遞減,在(1a,+∞)上單調(diào)遞增;②由①知,若a≤0,函數(shù)f(x)在(0,+∞)上單調(diào)遞減,不可能有兩個(gè)不同的零點(diǎn),故a0;且當(dāng)x→0時(shí),f(x)→+∞;當(dāng)x→+∞時(shí),f(x)→+∞;故要使函數(shù)f(x)有兩個(gè)不同的零點(diǎn),只需f(x)min=f(1a)=a?(1a)2+a2aln1a0,即lna1a+10,又函數(shù)y=lnx1x+1在(0,+∞)上為增函數(shù),且ln111+1=0,故lna1a+10的解集為(0,1).故實(shí)數(shù)a的取值范圍為(0,1);(2)證明:g39。(x)=ex2axa,依題意,ex12ax1a=0ex22ax2a=0,兩式相減得,2a=ex1ex2x1x2(x1x2),要證x1+x2ln(4a2),即證x1+x22ln2a,即證ex1+x22ex1ex2x1x2,兩邊同除以ex2,即證(x1x2)ex1x22ex1x21,令t=x1x2(t0),即證tet2et+10,令h(t)=tet2et+1(t0),則h39。(t)=et2[et2(t2+1)],令p(t)=et2(t2+1),則p39。(t)=12(et21),當(dāng)t0時(shí),p39。(t)0,p(t)在(∞,0)上遞減,∴p(t)p(0)=0,∴h39。(t)0,∴h(t)在(∞,0)上遞減,∴h(t)h(0)=0,即tet2et+10,故x1+x2ln(4a2).【解析】(1)①求出f(x)并求導(dǎo),解關(guān)于導(dǎo)函數(shù)的不等式即可得到單調(diào)區(qū)間;②顯然a0,分析可知只需f(x)的最小值小于0即可滿足條件,進(jìn)而得解;(2)依題意,將所證不等式轉(zhuǎn)化為證明(x1x2)ex1x22ex1x21,再通過(guò)換元構(gòu)造新函數(shù)即可得證.本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)的零點(diǎn)問(wèn)題,考查極值點(diǎn)偏移問(wèn)題,考查轉(zhuǎn)化思想,換元思想及化簡(jiǎn)運(yùn)算能力,邏輯推理能力,屬于中檔題.
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1