freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學培優(yōu)專題復習平行四邊形練習題及詳細答案-資料下載頁

2025-03-31 22:55本頁面
  

【正文】 6。,∴△BME是等腰直角三角形,∴BM=ME,BM⊥EM.故答案為BM=ME,BM⊥EM.(2)ME=MB.證明如下:連接CM,如解圖所示.∵DC⊥AC,M是邊AD的中點,∴MC=MA=MD.∵BA=BC,∴BM垂直平分AC.∵∠ABC=120176。,BA=BC,∴∠MBE=∠ABC=60176。,∠BAC=∠BCA=30176。,∠DCE=60176。.∵AB∥DE,∴∠ABE+∠DEC=180176。,∴∠DEC=60176。,∴∠DCE=∠DEC=60176。,∴△CDE是等邊三角形,∴EC=ED.∵MC=MD,∴EM垂直平分CD,EM平分∠DEC,∴∠MEC=∠DEC=30176。,∴∠MBE+∠MEB=90176。,即∠BME=90176。.在Rt△BME中,∵∠MEB=30176。,∴ME=MB.(3) 如圖3中,結論:EM=BM?tan.理由:同法可證:BM⊥EM,BM平分∠ABC,所以EM=BM?tan.【點睛】本題考查四邊形綜合題、等腰直角三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的性質(zhì)、銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.14.如圖1,在長方形紙片ABCD中,AB=mAD,其中m?1,將它沿EF折疊(點E.F分別在邊AB、CD上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD相交于點P,其中0n?1.(1)如圖2,當n=1(即M點與D點重合),求證:四邊形BEDF為菱形;(2)如圖3,當(M為AD的中點),m的值發(fā)生變化時,求證:EP=AE+DP;(3)如圖1,當m=2(即AB=2AD),n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.【答案】(1)證明見解析;(2)證明見解析;(3)值不變,理由見解析.【解析】試題分析:(1)由條件可知,當n=1(即M點與D點重合),m=2時,AB=2AD,設AD=a,則AB=2a,由矩形的性質(zhì)可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結論.(2)延長PM交EA延長線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質(zhì)就可以得出結論.(3)如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,通過證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90176。,∠EDF+∠NDF=90176。,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴ABAE=CDCF. ∴BE=DF. ∴BE=DE.Rt△AED中,由勾股定理,得,即,∴AE=AD.∴BE=2ADAD=.∴.(2)如圖3,延長PM交EA延長線于G,∴∠GAM=90176。.∵M為AD的中點,∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90176。.∵四邊形FKBC是矩形,∴KF=BC,F(xiàn)C=KB.∵∠FKB=90176。,∴∠KBO+∠KOB=90176。.∵∠QOF+∠QFO=90176。,∠QOF=∠KOB,∴∠KBO=∠OFQ.∵∠A=∠EKF=90176。,∴△ABM∽△KFE.∴即.∵AB=2AD=2BC,BK=CF,∴.∴的值不變.考點:;;;;.15.如圖①,在△ABC中,AB=7,tanA=,∠B=45176。.點P從點A出發(fā),沿AB方向以每秒1個單位長度的速度向終點B運動(不與點A、B重合),過點P作PQ⊥AB.交折線ACCB于點Q,以PQ為邊向右作正方形PQMN,設點P的運動時間為t(秒),正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位).(1)直接寫出正方形PQMN的邊PQ的長(用含t的代數(shù)式表示).(2)當點M落在邊BC上時,求t的值.(3)求S與t之間的函數(shù)關系式.(4)如圖②,點P運動的同時,點H從點B出發(fā),沿BAB的方向做一次往返運動,在BA上的速度為每秒2個單位長度,在AB上的速度為每秒4個單位長度,當點H停止運動時,點P也隨之停止,連結MH.設MH將正方形PQMN分成的兩部分圖形面積分別為SS2(平方單位)(0<S1<S2),直接寫出當S2≥3S1時t的取值范圍.【答案】(1) PQ=7t.(2) t=.(3) 當0<t≤時,S=.當<t≤4,.當4<t<7時,.(4)或或.【解析】試題分析:(1)分兩種情況討論:當點Q在線段AC上時,當點Q在線段BC上時.(2)根據(jù)AP+PN+NB=AB,列出關于t的方程即可解答;(3)當0<t≤時,當<t≤4,當4<t<7時;(4)或或.試題解析:(1)當點Q在線段AC上時,PQ=tanAAP=t.當點Q在線段BC上時,PQ=7t.(2)當點M落在邊BC上時,如圖③,由題意得:t+t+t=7,解得:t=.∴當點M落在邊BC上時,求t的值為.(3)當0<t≤時,如圖④,S=.當<t≤4,如圖⑤,.當4<t<7時,如圖⑥,.(4)或或..考點:四邊形綜合題.
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1