freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)平行四邊形的專項培優(yōu)練習(xí)題(含答案)附答案-資料下載頁

2025-03-30 22:23本頁面
  

【正文】 考點:四邊形綜合題14.如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(3,3).將正方形ABCO繞點A順時針旋轉(zhuǎn)角度α(0176。<α<90176。),得到正方形ADEF,ED交線段OC于點G,ED的延長線交線段BC于點P,連AP、AG.(1)求證:△AOG≌△ADG;(2)求∠PAG的度數(shù);并判斷線段OG、PG、BP之間的數(shù)量關(guān)系,說明理由;(3)當(dāng)∠1=∠2時,求直線PE的解析式;(4)在(3)的條件下,直線PE上是否存在點M,使以M、A、G為頂點的三角形是等腰三角形?若存在,請直接寫出M點坐標;若不存在,請說明理由.【答案】(1)見解析(2)∠PAG =45176。,PG=OG+BP.理由見解析(3)y=x﹣3.(4)、.【解析】試題分析:(1)由AO=AD,AG=AG,根據(jù)斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等,判斷出△AOG≌△ADG即可.(2)首先根據(jù)三角形全等的判定方法,判斷出△ADP≌△ABP,再結(jié)合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根據(jù)∠1+∠DAG+∠DAP+∠BAP=90176。,求出∠PAG的度數(shù);最后判斷出線段OG、PG、BP之間的數(shù)量關(guān)系即可.(3)首先根據(jù)△AOG≌△ADG,判斷出∠AGO=∠AGD;然后根據(jù)∠1+∠AGO=90176。,∠2+∠PGC=90176。,判斷出當(dāng)∠1=∠2時,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180176。,求出∠1=∠2=30176。;最后確定出P、G兩點坐標,即可判斷出直線PE的解析式.(4)根據(jù)題意,分兩種情況:①當(dāng)點M在x軸的負半軸上時;②當(dāng)點M在EP的延長線上時;根據(jù)以M、A、G為頂點的三角形是等腰三角形,求出M點坐標是多少即可.試題解析:(1)在Rt△AOG和Rt△ADG中,(HL) ∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP, 則∠DAP=∠BAP;∵△AOG≌△ADG, ∴∠1=∠DAG; 又∵∠1+∠DAG+∠DAP+∠BAP=90176。,∴2∠DAG+2∠DAP=90176。, ∴∠DAG+∠DAP=45176。, ∵∠PAG=∠DAG+∠DAP, ∴∠PAG=45176。; ∵△AOG≌△ADG, ∴DG=OG, ∵△ADP≌△ABP, ∴DP=BP, ∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG, ∴∠AGO=∠AGD, 又∵∠1+∠AGO=90176。,∠2+∠PGC=90176。,∠1=∠2,∴∠AGO=∠PGC, 又∵∠AGO=∠AGD, ∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180176。, ∴∠AGO=∠AGD=∠PGC=180176。247。3=60176。,∴∠1=∠2=90176。﹣60176。=30176。; 在Rt△AOG中, ∵AO=3, ∴OG=AOtan30176。=3=,∴G點坐標為(,0),CG=3﹣, 在Rt△PCG中,PC===3(﹣1),∴P點坐標為:(3,3﹣3 ), 設(shè)直線PE的解析式為:y=kx+b, 則,解得:, ∴直線PE的解析式為y=x﹣3.(4)①如圖1,當(dāng)點M在x軸的負半軸上時, ∵AG=MG,點A坐標為(0,3),∴點M坐標為(0,﹣3).②如圖2,當(dāng)點M在EP的延長線上時, 由(3),可得∠AGO=∠PGC=60176。,∴EP與AB的交點M,滿足AG=MG, ∵A點的橫坐標是0,G點橫坐標為,∴M的橫坐標是2,縱坐標是3, ∴點M坐標為(2,3).綜上,可得 點M坐標為(0,﹣3)或(2,3).考點:幾何變換綜合題.15.如圖1,在菱形ABCD中,ABC=60176。,若點E在AB的延長線上,EF∥AD,EF=BE,點P是DE的中點,連接FP并延長交AD于點G.(1)過D作DHAB,垂足為H,若DH=,BE=AB,求DG的長;(2)連接CP,求證:CPFP;(3)如圖2,在菱形ABCD中,ABC=60176。,若點E在CB的延長線上運動,點F在AB的延長線上運動,且BE=BF,連接DE,點P為DE的中點,連接FP、CP,那么第(2)問的結(jié)論成立嗎?若成立,求出的值;若不成立,請說明理由.【答案】(1)1;(2)見解析;(3).【解析】試題分析:(1)根據(jù)菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60176。,則∠DAH=∠ABC=60176。,根據(jù)DH⊥AB得出∠DHA=90176。,根據(jù)Rt△ADH的正弦值得出AD的長度,然后得出BE的長度,然后證明△PDG≌△PEF,得出DG=EF,根據(jù)EF∥AD,AD∥BC得出EF∥BC,則說明△BEF為正三角形,從而得出DG的長度;(2)連接CG、CF,根據(jù)△PDG≌△PEF得出PG=PF,然后證明△CDG≌△CBF,從而得到CG=CF,根據(jù)PG=PF得出垂直;(3)過D作EF的平行線,交FP延長于點G,連接CG、CF證△PEF≌△PDG,然后證明△CDG≌△CBF,從而得出∠GCE=120176。,根據(jù)Rt△CPF求出比值.試題解析:(1)解:∵四邊形ABCD為菱形 ∴DA∥BC CD=CB ∠CDG=∠CBA=60176。 ∴∠DAH=∠ABC=60176。∵DH⊥AB ∴∠DHA=90176。 在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P為DE的中點 ∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60176。 ∵BE=EF ∴△BEF為正三角形 ∴EF=BE=1 ∴DG=EF=證明:連接CG、CF由(1)知 △PDG≌△PEF ∴PG=PF在△CDG與△CBF中 易證:∠CDG=∠CBF=60176。 CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如圖:CP⊥GF仍成立理由如下:過D作EF的平行線,交FP延長于點G連接CG、CF證△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60176。 ∴∠CDG=∠ADC+∠GDA=120176。∵∠CBF=180176。-∠EBF=120176。 ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120176。 ∴∠DCG+∠GCE=120176。 ∴∠FCE+∠GCE=120176。 即∠GCE=120176?!唷螰CP=∠GCE=60176。 在Rt△CPF中 tan∠FCP=tan60176。==考點:三角形全等的證明與性質(zhì).
點擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1