freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學培優(yōu)專題復習平行四邊形練習題附詳細答案-資料下載頁

2025-03-31 23:04本頁面
  

【正文】 ∴BC=;(2)①如圖1,∵B(0,3),∴OB=3,∵AB=5,∴AO=ABBO=53=2,∴A(0,2).當在x軸上方時,點A的坐標為(0,8),②如圖2,過點C作CF⊥OA與點F,∵△ABC為等腰直角三角形,∴∠BAC=90176。,AB=AC,∴∠BAO+∠CAF=90176。,∵∠OBA+∠BAO=90176。,∴∠CAF=∠OBA,在△AOB和△CFA中,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(7,4)∵A(4,0)設直線AC解析式為y=kx+b,將A與C坐標代入得:,解得:,則直線AC解析式為y=x,∵將△ABC繞點B逆時針旋轉(zhuǎn),當旋轉(zhuǎn)角為90176。時,得到△BDE,∴∠ABD=90176。,∵∠CAB=90176。,∴∠ABD=∠CAB=90176。,∴AC∥BD,∴設直線BD的解析式為y=x+b1,把B(0,3)代入解析式的:b1=3,∴直線BD的解析式為y=x+3;③因為旋轉(zhuǎn)過程中AC掃過的圖形是以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積,所以可得:S=;(3)將△ABC向右平移到△A′B′C′的位置,△ABC掃過的圖形是一個平行四邊形和三角形ABC,如圖3:將C點的縱坐標代入一次函數(shù)y=x+3,求得C′的橫坐標為,平行四邊CAA′C′的面積為(7+)4=,三角形ABC的面積為55=△ABC掃過的面積為:.考點:幾何變換綜合題.14.已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點M,CF與AD交于點N.(1)求證:△ABM≌△CDN;(2)矩形ABCD和矩形AECF滿足何種關系時,四邊形 AMCN是菱形,證明你的結論.【答案】(1)證明見解析;(2)當AB=AF時,四邊形AMCN是菱形.證明見解析;【解析】試題分析:(1)由已知條件可得四邊形AMCN是平行四邊形,從而可得AM=CN,再由AB=CD,∠B=∠D=90176。,利用HL即可證明;(2)若四邊形AMCN為菱形,則有AM=AN,從已知可得∠BAM=∠FAN,又∠B=∠F=90176。,所以有△ABM≌△AFN,從而得AB=AF,因此當AB=AF時,四邊形AMCN是菱形.試題解析:(1)∵四邊形ABCD是矩形,∴∠B=∠D=90176。,AB=CD,AD∥BC.∵四邊形AECF是矩形,∴AE∥CF.∴四邊形AMCN是平行四邊形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.(2)當AB=AF時,四邊形AMCN是菱形.∵四邊形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90176。.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四邊形AMCN是平行四邊形,∴平行四邊形AMCN是菱形.考點:1.矩形的性質(zhì);2.三角形全等的判定與性質(zhì);3.菱形的判定.15.(本題14分)小明在學習平行線相關知識時總結了如下結論:端點分別在兩條平行線上的所有線段中,垂直于平行線的線段最短.小明應用這個結論進行了下列探索活動和問題解決.問題1:如圖1,在Rt△ABC中,∠C=90176。,AC=4,BC=3,P為AC邊上的一動點,以PB,PA為邊構造□APBQ,求對角線PQ的最小值及PQ最小時的值.(1)在解決這個問題時,小明構造出了如圖2的輔助線,則PQ的最小值為 ,當PQ最小時= _____ __;(2)小明對問題1做了簡單的變式思考.如圖3,P為AB邊上的一動點,延長PA到點E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對角線PQ長的最小值,并求PQ最小時的值;問題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點,以,為邊作□.試求對角線長的最小值和PQ最小時的值.(2)若為上任意一點,延長到,使,再以,為邊作□.請直接寫出對角線長的最小值和PQ最小時的值.【答案】問題1:(1)3,;(2)PQ=,=.問題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:問題1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當QP⊥AC時,PQ最小.過點C作CD⊥AB于點D.此時四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176。,AC=4,BC=3,利用面積可求出CD=,然后可求出AD=, 由AE=nPA可得PE=,而PE=CQ=PD=ADAP=,所以AP=.所以=.問題2:(1)設對角線與相交于點.Rt≌Rt.所以AD=HC,QH=AP.由題可知:當QP⊥AB時,PQ最小,此時=CH=4,根據(jù)條件可證四邊形BPQH為矩形,從而QH=BP=AP.所以.(2)根據(jù)題意畫出圖形,當 AB時,的長最小,PQ的最小值為..試題解析:問題1:(1)3,;(2)過點C作CD⊥AB于點D.由題意可知當PQ⊥AB時,PQ最短.所以此時四邊形CDPQ為矩形.PQ=CD,DP=CQ=PE.因為∠BCA=90176。,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因為AE=nPA,所以PE==CQ=PD=ADAP=.所以AP=.所以=.問題2:(1)如圖2,設對角線與相交于點.所以G是DC的中點,作QHBC,交BC的延長線于H,因為AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由圖知,當 AB時,的長最小,即=CH=4.易得四邊形BPQH為矩形,所以QH=BP=AP.所以.(若學生有能力從梯形中位線角度考慮,若正確即可評分.但講評時不作要求)(2)PQ的最小值為..考點:1.直角三角形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì);4矩形的判定與性質(zhì).
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1