freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

備戰(zhàn)中考數學培優(yōu)專題復習平行四邊形練習題含答案解析-資料下載頁

2025-03-31 22:12本頁面
  

【正文】 移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由見解析;(4)CP=QC﹣QP=.【解析】試題分析:(1)AE=DF,AE⊥DF.先證得△ADE≌△DCF.由全等三角形的性質得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四邊形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90176。,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因為∠CDF+∠ADF=90176。,∠DAE+∠ADF=90176。,所以AE⊥DF;(3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長FD交AE于點G,再由等角的余角相等可得AE⊥DF;(4)由于點P在運動中保持∠APD=90176。,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形,∴AD=DC,∠ADC=∠C=90176。.在△ADE和△DCF中,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90176。,∴∠DAE+∠ADF=90176。.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長FD交AE于點G,則∠CDF+∠ADG=90176。,∴∠ADG+∠DAE=90176。.∴AE⊥DF;(4)如圖:由于點P在運動中保持∠APD=90176。,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考點:四邊形的綜合知識.14.已知點O是△ABC內任意一點,連接OA并延長到E,使得AE=OA,以OB,OC為鄰邊作?OBFC,連接OF與BC交于點H,再連接EF.(1)如圖1,若△ABC為等邊三角形,求證:①EF⊥BC;②EF=BC;(2)如圖2,若△ABC為等腰直角三角形(BC為斜邊),猜想(1)中的兩個結論是否成立?若成立,直接寫出結論即可;若不成立,請你直接寫出你的猜想結果;(3)如圖3,若△ABC是等腰三角形,且AB=AC=kBC,請你直接寫出EF與BC之間的數量關系.【答案】(1)見解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】試題分析:(1)由平行四邊形的性質得到BH=HC=BC,OH=HF,再由等邊三角形的性質得到AB=BC,AH⊥BC,根據勾股定理得到AH=BC,即可;(2)由平行四邊形的性質得到BH=HC=BC,OH=HF,再由等腰直角三角形的性質得到AB=BC,AH⊥BC,根據勾股定理得到AH=BC,即可;(3)由平行四邊形的性質得到BH=HC=BC,OH=HF,再由等腰三角形的性質和AB=AC=kBC得到AB=BC,AH⊥BC,根據勾股定理得到AH=BC,即可.試題解析:(1)連接AH,如圖1,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等邊三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如圖2,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如圖3,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2)BC2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF=BC.考點:四邊形綜合題.15.如圖1,在菱形ABCD中,ABC=60176。,若點E在AB的延長線上,EF∥AD,EF=BE,點P是DE的中點,連接FP并延長交AD于點G.(1)過D作DHAB,垂足為H,若DH=,BE=AB,求DG的長;(2)連接CP,求證:CPFP;(3)如圖2,在菱形ABCD中,ABC=60176。,若點E在CB的延長線上運動,點F在AB的延長線上運動,且BE=BF,連接DE,點P為DE的中點,連接FP、CP,那么第(2)問的結論成立嗎?若成立,求出的值;若不成立,請說明理由.【答案】(1)1;(2)見解析;(3).【解析】試題分析:(1)根據菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60176。,則∠DAH=∠ABC=60176。,根據DH⊥AB得出∠DHA=90176。,根據Rt△ADH的正弦值得出AD的長度,然后得出BE的長度,然后證明△PDG≌△PEF,得出DG=EF,根據EF∥AD,AD∥BC得出EF∥BC,則說明△BEF為正三角形,從而得出DG的長度;(2)連接CG、CF,根據△PDG≌△PEF得出PG=PF,然后證明△CDG≌△CBF,從而得到CG=CF,根據PG=PF得出垂直;(3)過D作EF的平行線,交FP延長于點G,連接CG、CF證△PEF≌△PDG,然后證明△CDG≌△CBF,從而得出∠GCE=120176。,根據Rt△CPF求出比值.試題解析:(1)解:∵四邊形ABCD為菱形 ∴DA∥BC CD=CB ∠CDG=∠CBA=60176。 ∴∠DAH=∠ABC=60176?!逥H⊥AB ∴∠DHA=90176。 在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P為DE的中點 ∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60176。 ∵BE=EF ∴△BEF為正三角形 ∴EF=BE=1 ∴DG=EF=證明:連接CG、CF由(1)知 △PDG≌△PEF ∴PG=PF在△CDG與△CBF中 易證:∠CDG=∠CBF=60176。 CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如圖:CP⊥GF仍成立理由如下:過D作EF的平行線,交FP延長于點G連接CG、CF證△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60176。 ∴∠CDG=∠ADC+∠GDA=120176?!摺螩BF=180176。-∠EBF=120176。 ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120176。 ∴∠DCG+∠GCE=120176。 ∴∠FCE+∠GCE=120176。 即∠GCE=120176?!唷螰CP=∠GCE=60176。 在Rt△CPF中 tan∠FCP=tan60176。==考點:三角形全等的證明與性質.
點擊復制文檔內容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1