freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)-平行四邊形-培優(yōu)易錯(cuò)試卷練習(xí)(含答案)含答案-資料下載頁(yè)

2025-03-30 22:20本頁(yè)面
  

【正文】 AE和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點(diǎn):(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).13.如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.(1)寫(xiě)出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說(shuō)明理由;(2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105176。,求線段BG的長(zhǎng).【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN247。cos30176。即可解決問(wèn)題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對(duì)角線BD對(duì)稱(chēng),∵點(diǎn)G在BD上,∴GA=GC,∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,∴∠GEC=∠ECF=∠CFG=90176。,∴四邊形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.∵∠AGF=105176。,∠FBG=∠FGB=∠ABG=45176。,∴∠AGB=60176。,∠GBN=30176。,∠ABM=∠MAB=15176。,∴∠AMN=30176。,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN247。cos30176。=.考點(diǎn):正方形的性質(zhì),矩形的判定和性質(zhì),勾股定理,直角三角形30度的性質(zhì)14.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,連接DF.(1)說(shuō)明△BEF是等腰三角形;(2)求折痕EF的長(zhǎng).【答案】(1)見(jiàn)解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過(guò)E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過(guò)E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點(diǎn)睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識(shí)點(diǎn),能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.15.在正方形ABCD中,動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).(1)如圖①,當(dāng)點(diǎn)E自D向C,點(diǎn)F自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫(xiě)出AE與DF的位置關(guān)系,并說(shuō)明理由;(2)如圖②,當(dāng)E,F(xiàn)分別移動(dòng)到邊DC,CB的延長(zhǎng)線上時(shí),連接AE和DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不須證明)(3)如圖③,當(dāng)E,F(xiàn)分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由;(4)如圖④,當(dāng)E,F(xiàn)分別在邊DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫(huà)出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由見(jiàn)解析;(4)CP=QC﹣QP=.【解析】試題分析:(1)AE=DF,AE⊥DF.先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四邊形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90176。,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因?yàn)椤螩DF+∠ADF=90176。,∠DAE+∠ADF=90176。,所以AE⊥DF;(3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長(zhǎng)FD交AE于點(diǎn)G,再由等角的余角相等可得AE⊥DF;(4)由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90176。,所以點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,再由勾股定理可得QC的長(zhǎng),再求CP即可.試題解析:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形,∴AD=DC,∠ADC=∠C=90176。.在△ADE和△DCF中,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90176。,∴∠DAE+∠ADF=90176。.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長(zhǎng)FD交AE于點(diǎn)G,則∠CDF+∠ADG=90176。,∴∠ADG+∠DAE=90176。.∴AE⊥DF;(4)如圖:由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90176。,∴點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考點(diǎn):四邊形的綜合知識(shí).
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1