freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學-平行四邊形-培優(yōu)-易錯-難題練習(含答案)附答案解析-資料下載頁

2025-03-30 22:20本頁面
  

【正文】 外側(cè)作的四邊形ACDE、BCFG和ABMN為正方形,則稱這三個正方形為外展三葉正方形.已知△ABC中,AC=3,BC=4.當∠C=_____176。時,圖中陰影部分的面積和有最大值是________.【答案】(1)證明見解析;(2)成立,證明見解析;(3)18.【解析】試題分析:(1)因為AC=DC,∠ACB=∠DCF=90176。,BC=FC,所以△ABC≌△DFC,從而△ABC與△DFC的面積相等;(2)延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.得到四邊形ACDE,BCFG均為正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因為S△ABC=BC?AP,S△DFC=FC?DQ,所以S△ABC=S△DFC;(3)根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,當△ABC是直角三角形,即∠C是90度時,陰影部分的面積和最大.所以S陰影部分面積和=3S△ABC=334=18.(1)證明:在△ABC與△DFC中,∵,∴△ABC≌△DFC.∴△ABC與△DFC的面積相等;(2)解:成立.理由如下:如圖,延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.∴∠APC=∠DQC=90176。.∵四邊形ACDE,BCFG均為正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90176。,∠DCQ+∠PCD=90176。,∴∠ACP=∠DCQ.∴,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=BC?AP,S△DFC=FC?DQ,∴S△ABC=S△DFC;(3)解:根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,∴當△ABC是直角三角形,即∠C是90度時,陰影部分的面積和最大.∴S陰影部分面積和=3S△ABC=334=18.考點:四邊形綜合題14.正方形ABCD的邊長為1,對角線AC與BD相交于點O,點E是AB邊上的一個動點(點E不與點A、B重合),CE與BD相交于點F,設線段BE的長度為x.(1)如圖1,當AD=2OF時,求出x的值;(2)如圖2,把線段CE繞點E順時針旋轉(zhuǎn)90176。,使點C落在點P處,連接AP,設△APE的面積為S,試求S與x的函數(shù)關(guān)系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),當x=時,S的值最大,最大值為,.【解析】試題分析:(1)過O作OM∥AB交CE于點M,如圖1,由平行線等分線段定理得到CM=ME,根據(jù)三角形的中位線定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到結(jié)果;(2)過P作PG⊥AB交AB的延長線于G,如圖2,根據(jù)已知條件得到∠ECB=∠PEG,根據(jù)全等三角形的性質(zhì)得到EB=PG=x,由三角形的面積公式得到S=(1﹣x)?x,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.試題解析:(1)過O作OM∥AB交CE于點M,如圖1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)過P作PG⊥AB交AB的延長線于G,如圖2,∵∠CEP=∠EBC=90176。,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90176。,在△EPG與△CEB中,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴當x=時,S的值最大,最大值為,.考點:四邊形綜合題15.已知點O是△ABC內(nèi)任意一點,連接OA并延長到E,使得AE=OA,以OB,OC為鄰邊作?OBFC,連接OF與BC交于點H,再連接EF.(1)如圖1,若△ABC為等邊三角形,求證:①EF⊥BC;②EF=BC;(2)如圖2,若△ABC為等腰直角三角形(BC為斜邊),猜想(1)中的兩個結(jié)論是否成立?若成立,直接寫出結(jié)論即可;若不成立,請你直接寫出你的猜想結(jié)果;(3)如圖3,若△ABC是等腰三角形,且AB=AC=kBC,請你直接寫出EF與BC之間的數(shù)量關(guān)系.【答案】(1)見解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】試題分析:(1)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等邊三角形的性質(zhì)得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可;(2)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等腰直角三角形的性質(zhì)得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可;(3)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等腰三角形的性質(zhì)和AB=AC=kBC得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可.試題解析:(1)連接AH,如圖1,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等邊三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如圖2,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如圖3,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2)BC2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF=BC.考點:四邊形綜合題.
點擊復制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1