freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小學(xué)數(shù)學(xué)教學(xué)網(wǎng):小學(xué)奧數(shù)公式(編輯修改稿)

2024-11-15 03:54 本頁面
 

【文章內(nèi)容簡介】 0棵,雨天每天植樹12棵,他接連幾天共植樹112棵,平均每天植樹14棵。問:這幾天中共有幾個雨天?7.振興小學(xué)六年級舉行數(shù)學(xué)競賽,共有20道試題。做對一題得5分,沒做或做錯一題都要扣3分。小建得了60分,那么他做對了幾道題?8.有一批水果,用大筐80只可裝運完,用小筐120只也可裝運完。已知每只大筐比每只小筐多裝運20千克,那么這批水果有多少千克?9.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀?,F(xiàn)有三種小蟲共18只,有118條腿和20對翅膀。問:每種小蟲各有幾只? 10.雞、兔共有腳100只,若將雞換成兔,兔換成雞,則共有腳92只。問:雞、兔各幾只?高冠軍,所以由(1)知乙不是數(shù)學(xué)博士。將上面的結(jié)論依次填入上表,便得到下表:所以,甲是小畫家和歌唱家,乙是短跑健將和跳高冠軍,丙是數(shù)學(xué)博士和大作家。例4張明、席輝和李剛在北京、上海和天津工作,他們的職業(yè)是工人、農(nóng)民和教師,已知:(1)張明不在北京工作,席輝不在上海工作;(2)在北京工作的不是教師;(3)在上海工作的是工人;(4)席輝不是農(nóng)民。問:這三人各住哪里?各是什么職業(yè)?小學(xué)奧數(shù)基礎(chǔ)教程(四年級)分析與解:與前面的例題相比,這道題的關(guān)系要復(fù)雜一些,要求我們通過推理,弄清人物、工作地點、職業(yè)三者之間的關(guān)系。三者的關(guān)系需要兩兩構(gòu)造三個表,即人物與地點,人物與職業(yè),地點與職業(yè)三個表。我們先將題目條件中所給出的關(guān)系用下面的表來表示,由條件(1)得到表1,由條件(4)得到表2,由條件(2)(3)得到表3。因為各表中,每行每列只能有一個“√”,所以表(3)可填全為表(4)。因為席輝不在上海工作,在上海工作的是工人,所以席輝不是工人,他又不是農(nóng)民,所以席輝是教師。再由表4知,教師住在天津,即席輝住在天津。至此,表1可填全為表5。對照表5和表4,得到:張明住在上海是工人,席輝住在天津是教師,李剛住在北京是農(nóng)民。第四篇:小學(xué)數(shù)學(xué)奧數(shù)教案綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程小學(xué)奧數(shù)基礎(chǔ)教程第1講 速算與巧算(一)第2講 速算與巧算(二)第3講 高斯求和第4講 4,8,9整除的數(shù)的特征 第5講 棄九法第6講 數(shù)的整除性(二)第7講 找規(guī)律(一)第8講 找規(guī)律(二)第9講 數(shù)字謎(一)第10講 數(shù)字謎(二)第11講 歸一問題與歸總問題 第12講 年齡問題第13講 雞兔同籠問題與假設(shè)法 第14講 盈虧問題與比較法(一)第15講 盈虧問題與比較法(二)第16講 數(shù)陣圖(一)第17講 數(shù)陣圖(二)第18講 數(shù)陣圖(三)第19將 乘法原理 第20講 加法原理(一)第21講 加法原理(二)第22講 還原問題(一)第23講 還原問題(二)第24講 頁碼問題 第25講 智取火柴 第26講 邏輯問題(一)第27講 邏輯問題(二)第28講 最不利原則 第29講 抽屜原理(一)第30講 抽屜原理(二)綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程第1講 速算與巧算(一)計算是數(shù)學(xué)的基礎(chǔ),小學(xué)生要學(xué)好數(shù)學(xué),必須具有過硬的計算本領(lǐng)。準(zhǔn)確、快速的計算能力既是一種技巧,也是一種思維訓(xùn)練,既能提高計算效率、節(jié)省計算時間,更可以鍛煉記憶力,提高分析、判斷能力,促進(jìn)思維和智力的發(fā)展。我們在三年級已經(jīng)講過一些四則運算的速算與巧算的方法,本講和下一講主要介紹加法的基準(zhǔn)數(shù)法和乘法的補同與同補速算法。例1 四年級一班第一小組有10名同學(xué),某次數(shù)學(xué)測驗的成績(分?jǐn)?shù))如下:86,78,77,83,91,74,92,69,84,75。求這10名同學(xué)的總分。分析與解:通常的做法是將這10個數(shù)直接相加,但這些數(shù)雜亂無章,直接相加既繁且易錯。觀察這些數(shù)不難發(fā)現(xiàn),這些數(shù)雖然大小不等,但相差不大。我們可以選擇一個適當(dāng)?shù)臄?shù)作“基準(zhǔn)”,比如以“80”作基準(zhǔn),這10個數(shù)與80的差如下:6,2,3,3,11,6,12,11,4,5,其中“”號表示這個數(shù)比80小。于是得到總和=8010+(623+3+116+1211+45)=800+9=809。實際計算時只需口算,將這些數(shù)與80的差逐一累加。為了清楚起見,將這一過程表示如下:通過口算,得到差數(shù)累加為9,再加上8010,就可口算出結(jié)果為809。例1所用的方法叫做加法的基準(zhǔn)數(shù)法。這種方法適用于加數(shù)較多,而且所有的加數(shù)相差不大的情況。作為“基準(zhǔn)”的數(shù)(如例1的80)叫做基準(zhǔn)數(shù),各數(shù)與基準(zhǔn)數(shù)的差的和叫做累計差。由例1得到:總和數(shù)=基準(zhǔn)數(shù)加數(shù)的個數(shù)+累計差,平均數(shù)=基準(zhǔn)數(shù)+累計差247。加數(shù)的個數(shù)。在使用基準(zhǔn)數(shù)法時,應(yīng)選取與各數(shù)的差較小的數(shù)作為基準(zhǔn)數(shù),這樣才容易計算累計差。同時考慮到基準(zhǔn)數(shù)與加數(shù)個數(shù)的乘法能夠方便地計算出來,所以基準(zhǔn)數(shù)應(yīng)盡量選取整十、整百的數(shù)。例2 某農(nóng)場有10塊麥田,每塊的產(chǎn)量如下(單位:千克):462,480,443,420,473,429,468,439,475,461。求平均每塊麥田的產(chǎn)量。解:選基準(zhǔn)數(shù)為450,則累計差=12+30-7-30+23-21+18-11+25+11=50,平均每塊產(chǎn)量=450+50247。10=455(千克)。答:平均每塊麥田的產(chǎn)量為455千克。求一位數(shù)的平方,在乘法口訣的九九表中已經(jīng)被同學(xué)們熟知,如77=49(七七四十九)。對于兩位數(shù)的平方,大多數(shù)同學(xué)只是背熟了10~20的平方,而21~99的平方就不大熟悉了。有沒有什么竅門,能夠迅速算出兩位數(shù)的平方呢?這里向同學(xué)們介紹一種方法——湊整補零法。所謂湊整補零法,就是用所求數(shù)與最接近的整十?dāng)?shù)的差,通過移多補少,將所求數(shù)轉(zhuǎn)化成一個整十?dāng)?shù)乘以另一數(shù),再加上零頭的平方數(shù)。下面通過例題來說明這一方法。例3 求292和822的值。解:292=2929=(29+1)(291)+12=3028+1=840+1=841。綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程822=8282=(82-2)(82+2)+2=8084+4=6720+4=6724。由上例看出,因為29比30少1,所以給29“補”1,這叫“補少”;因為82比80多2,所以從82中“移走”2,這叫“移多”。因為是兩個相同數(shù)相乘,所以對其中一個數(shù)“移多補少”后,還需要在另一個數(shù)上“找齊”。本例中,給一個29補1,就要給另一個29減1;給一個82減了2,就要給另一個82加上2。最后,還要加上“移多補少”的數(shù)的平方。由湊整補零法計算352,得3535=4030+52=1225。這與三年級學(xué)的個位數(shù)是5的數(shù)的平方的速算方法結(jié)果相同。這種方法不僅適用于求兩位數(shù)的平方值,也適用于求三位數(shù)或更多位數(shù)的平方值。例4 求9932和20042的值。解:9932=993993=(993+7)(9937)+72=1000986+49=986000+49=986049。20042=20042004=(20044)(2004+4)+42=20002008+16=4016000+16=4016016。下面,我們介紹一類特殊情況的乘法的速算方法。請看下面的算式:6646,7388,1944。這幾道算式具有一個共同特點,兩個因數(shù)都是兩位數(shù),一個因數(shù)的十位數(shù)與個位數(shù)相同,另一因數(shù)的十位數(shù)與個位數(shù)之和為10。這類算式有非常簡便的速算方法。例5 8864=?分析與解:由乘法分配律和結(jié)合律,得到8864=(80+8)(60+4)=(80+8)60+(80+8)4=8060+860+804+84=8060+806+804+84=80(60+6+4)+84=80(60+10)+84=8(6+1)100+84。于是,我們得到下面的速算式:由上式看出,積的末兩位數(shù)是兩個因數(shù)的個位數(shù)之積,本例為84;積中從百位起前面的數(shù)是“個位與十位相同的因數(shù)”的十位數(shù)與“個位與十位之和為10的因數(shù)”的十位數(shù)加1的乘積,本例為8(6+1)。例6 7791=?解:由例3的解法得到 綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程由上式看出,當(dāng)兩個因數(shù)的個位數(shù)之積是一位數(shù)時,應(yīng)在十位上補一個0,本例為71=07。用這種速算法只需口算就可以方便地解答出這類兩位數(shù)的乘法計算。練習(xí)1:165,152,168,171,148,156,169,161,157,149。,量出12株麥苗的高度分別為(單位:厘米):26,25,25,23,27,28,26,24,29,27,27,25。求這批麥苗的平均高度。,他們加工零件的個數(shù)分別為:68,91,84,75,78,81,83,72,79。他們共加工了多少個零件?:13+16+10+11+17+12+15+12+16+13+12。:(1)372;(2)532;(3)912;(4)682:(5)1082;(6)3972。:(1)7728;(2)6655;(3)3319;(4)8244;(5)3733;(6)4699。練習(xí)1 答案。5.(1)1369;(2)2809;(3)8281;(4)4624;(5)11664;(6)157609。6.(1)2156;(2)3630;(3)627;(4)3608;(5)1221;(6)4554。第2講 速算與巧算(二)上一講我們介紹了一類兩位數(shù)乘法的速算方法,這一講討論乘法的“同補”與“補同”速算法。兩個數(shù)之和等于10,則稱這兩個數(shù)互補。在整數(shù)乘法運算中,常會遇到像7278,2686等被乘數(shù)與乘數(shù)的十位數(shù)字相同或互補,或被乘數(shù)與乘數(shù)的個位數(shù)字相同或互補的情況。7278的被乘數(shù)與乘數(shù)的十位數(shù)字相同、個位數(shù)字互補,這類式子我們稱為“頭相同、尾互補”型;2686的被乘數(shù)與乘數(shù)的十位數(shù)字互補、個位數(shù)字相同,這類式子我們稱為“頭互補、尾相同”型。計算這兩類題目,有非常簡捷的速算方法,分別稱為“同補”速算法和“補同”速算法。例1(1)7674=?(2)3139=?分析與解:本例兩題都是“頭相同、尾互補”類型。(1)由乘法分配律和結(jié)合律,得到 7674 =(70+6)(70+4)=(70+6)70+(70+6)4=7070+670+704+64 =70(70+6+4)+64 =70(70+10)+64 綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程=7(7+1)100+64。于是,我們得到下面的速算式:(2)與(1)類似可得到下面的速算式:由例1看出,在“頭相同、尾互補”的兩個兩位數(shù)乘法中,積的末兩位數(shù)是兩個因數(shù)的個位數(shù)之積(不夠兩位時前面補0,如19=09),積中從百位起前面的數(shù)是被乘數(shù)(或乘數(shù))的十位數(shù)與十位數(shù)加1的乘積?!巴a”速算法簡單地說就是: 積的末兩位是“尾尾”,前面是“頭(頭+1)”。我們在三年級時學(xué)到的1515,2525,?,9595的速算,實際上就是“同補”速算法。例2(1)7838=?(2)4363=?分析與解:本例兩題都是“頭互補、尾相同”類型。(1)由乘法分配律和結(jié)合律,得到7838 =(70+8)(30+8)=(70+8)30+(70+8)8 =7030+830+708+88 =7030+8(30+70)+88 =73100+8100+88 =(73+8)100+88。于是,我們得到下面的速算式:(2)與(1)類似可得到下面的速算式:由例2看出,在“頭互補、尾相同”的兩個兩位數(shù)乘法中,積的末兩位數(shù)是兩個因數(shù)的個位數(shù)之積(不夠兩位時前面補0,如33=09),積中從百位起前面的數(shù)是兩個因數(shù)的十位數(shù)之積加上被乘數(shù)(或乘數(shù))的個位數(shù)。“補同”速算法簡單地說就是: 積的末兩位數(shù)是“尾尾”,前面是“頭頭+尾”。例1和例2介紹了兩位數(shù)乘以兩位數(shù)的“同補”或“補同”形式的速算法。當(dāng)被乘數(shù)和乘數(shù)多于兩位時,情況會發(fā)生什么變化呢?我們先將互補的概念推廣一下。當(dāng)兩個數(shù)的和是10,100,1000,?時,這兩個數(shù)互為補數(shù),簡稱互補。如43與57互補,99與1互補,555與445互補。在一個乘法算式中,當(dāng)被乘數(shù)與乘數(shù)前面的幾位數(shù)相同,后面的幾位數(shù)互補時,這個算式就是“同補”型,即“頭相同,尾互補”型。例如,因為被乘數(shù)與乘數(shù)的綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程前兩位數(shù)相同,都是70,后兩位數(shù)互補,77+23=100,所以是“同補”型。又如,等都是“同補”型。當(dāng)被乘數(shù)與乘數(shù)前面的幾位數(shù)互補,后面的幾位數(shù)相同時,這個乘法算式就是“補同”型,即“頭互補,尾相同”型。例如,等都是“補同”型。在計算多位數(shù)的“同補”型乘法時,例1的方法仍然適用。例3(1)702708=?(2)17081792=? 解:(1)(2)計算多位數(shù)的“同補”型乘法時,將“頭(頭+1)”作為乘積的前幾位,將兩個互補數(shù)之積作為乘積的后幾位。注意:互補數(shù)如果是n位數(shù),則應(yīng)占乘積的后2n位,不足的位補“0”。在計算多位數(shù)的“補同”型乘法時,如果“補”與“同”,即“頭”與“尾”的位數(shù)相同,那么例2的方法仍然適用(見例4);如果“補”與“同”的位數(shù)不相同,那么例2的方法不再適用,因為沒有簡捷實用的方法,所以就不再討論了。例4 28657265=?解:練習(xí)2計算下列各題:62; 97;87; 39;62; 607;607; 6085。第3講 高斯求和德國著名數(shù)學(xué)家高斯幼年時代聰明過人,上學(xué)時,有一天老師出了一道題讓同學(xué)們計算:1+2+3+4+?+99+100=?老師出完題后,全班同學(xué)都在埋頭計算,小高斯卻很快算出答案等于5050。高斯為什么算得又快又準(zhǔn)呢?原來小高斯通過細(xì)心觀察發(fā)現(xiàn):1+100=2+99=3+98=?=49+52=50+51。綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程1~100正好可以分成這樣的50對數(shù),每對數(shù)的和都相等。于是,小高斯把這道題巧算為(1+100)100247。2=5050。小高斯使用的這種求和方法,真是聰明極了,簡單快捷,并且廣泛地適用于“等差數(shù)列”的求和問題。若干個數(shù)排成一列稱為數(shù)列,數(shù)列中的每一個數(shù)稱為一項,其中第一項稱為首項,最后一項稱為末項。后項與前項之差都相等的數(shù)
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1