freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

六年級數學復合應用題總復習(編輯修改稿)

2025-11-09 14:23 本頁面
 

【文章內容簡介】 是多少。b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。(4)解答減法應用題:a求剩余的應用題:從已知數中去掉一部分,求剩下的部分。b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。c求比一個數少幾的數的應用題:已知甲數是多少,乙數比甲數少多少,求乙數是多少。(5)解答乘法應用題:a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。(6)解答除法應用題:a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。d已知一個數的幾倍是多少,求這個數的應用題。(7)常見的數量關系:總價= 單價數量路程= 速度時間工作總量=工作時間工效總產量=單產量數量3典型應用題具有獨特的結構特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。(1)平均數問題:平均數是等分除法的發(fā)展。解題關鍵:在于確定總數量和與之相對應的總份數。算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和247。數量的個數=算術平均數。加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。數量關系式(部分平均數權數)的總和247。(權數的和)=加權平均數。差額平均數:是把各個大于或小于標準數的部分之和被總份數均分,求的是標準數與各數相差之和的平均數。數量關系式:(大數-小數)247。2=小數應得數最大數與各數之差的和247??偡輸?最大數應給數最大數與個數之差的和247??偡輸?最小數應得數。例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100,所用的時間為,汽車從乙地到甲地速度為 60 千米,所用的時間是,汽車共行的時間為+ = , 汽車的平均速度為 2 247。=75(千米)(2)歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。根據求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。根據球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!眱纱螝w一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!闭龤w一問題:用等分除法求出“單一量”之后,再用乘法計算結果的歸一問題。反歸一問題:用等分除法求出“單一量”之后,再用除法計算結果的歸一問題。解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然后以它為標準,根據題目的要求算出結果。數量關系式:單一量份數=總數量(正歸一)總數量247。單一量=份數(反歸一)例 一個織布工人,在七月份織布 4774 米,照這樣計算,織布 6930 米,需要多少天?分析:必須先求出平均每天織布多少米,就是單一量。693 0 247。(477 4 247。 31)=45(天)(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。數量關系式:單位數量單位個數247。另一個單位數量 = 另一個單位數量單位數量單位個數247。另一個單位數量= 另一個單位數量。例 修一條水渠,原計劃每天修 800 米,6 天修完。實際 4 天修完,每天修了多少米?分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。80 0 6 247。 4=1200(米)(4)和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然后再求另一個數。解題規(guī)律:(和+差)247。2 = 大數大數-差=小數(和-差)247。2 = 小數和-小數= 大數例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?分析:從乙班調 46 人到甲班,對于總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12,由此得到現在的乙班是(9 4 - 12)247。 2=41(人),乙班在調出 46 人之前應該為 41+46=87(人),甲班為 9 4 - 87=7(人)總數247??偡輸担狡骄鶖岛筒顔栴}的公式(和+差)247。2=大數(和-差)247。2=小數(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。解題關鍵:找準標準數(即1倍數)一般說來,題中說是“誰”的幾倍,把誰就確定為標準數。求出倍數和之后,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標準數的倍數關系,再去求另一個數(或幾個數)的數量。解題規(guī)律:和247。倍數和=標準數標準數倍數=另一個數例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?分析:大貨車比小貨車
點擊復制文檔內容
醫(yī)療健康相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1