【總結】1法門高中姚連省2前面,我們把平面向量推廣到空間向量向量漸漸成為重要工具立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應用.
2024-11-18 13:29
【總結】空間向量運算的坐標表示【學習目標】⒈掌握空間向量坐標運算的規(guī)律;,判斷兩個向量共線或垂直;【自主學習】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2024-11-19 23:24
【總結】aBAOlP空間向量的數(shù)乘運算【學習目標】理解空間向量共線、共面的充要條件【自主學習】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當向量a?、b?共線(或a?//b?)時,表示a?、b
2024-12-05 06:40
【總結】空間向量的數(shù)量積(二)【學習目標】利用空間向量的數(shù)量積解決立體幾何中的一些簡單問題?!咀灾鲗W習與檢測】在正方體1111ABCDABCD?中,點M是AB的中點,(1)求證;1ACDB?三、求1DB與CM所成角的余弦值。完成此題后,請你比較傳統(tǒng)證法與向量證法的優(yōu)劣。
2024-12-05 01:52
【總結】空間向量的數(shù)量積(一)【學習目標】;;?!咀灾鲗W習】:::補充定義:零向量與任何向量的數(shù)量積為______________.:①___________________②__________________③___________________【自主檢測】
【總結】橢圓的簡單幾何性質(二)【學習目標】1.掌握橢圓范圍、對稱性、頂點、離心率、準線方程等幾何性質;2.能利用橢圓的幾何性質解決相關的問題.【自主檢測】1.求直線320xy???與橢圓221164xy??的交點坐標.2.已知橢圓22149xy??,一組平行直線的斜率是32,問這組直線何時與橢圓相交?
2024-12-05 06:41
【總結】圓的簡單幾何性質(三)【學習目標】1.掌握橢圓的第二定義;2.能利用橢圓的第二定義解決相關的問題.【典型例題】例1.點(,)Mxy與定點(4,0)F的距離和它到直線25:4lx?的距離之比是常數(shù)45,求點M的軌跡,并說明軌跡是什么圖形.思考:
2024-11-19 19:35
【總結】(一)【學習目標】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質奎屯王新敞新疆2.掌握標準方程中cba,,的幾何意義,以及ecba,,,的相互關系奎屯王新敞新疆3.理解、掌握坐標法中根據(jù)曲線的方程研究曲線的幾何性質的一般方法奎屯王新敞新疆【自主學習】yx,2.的點?橢圓的長軸與短軸是怎樣
【總結】第三章空間向量與立體幾何1、坐標運算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-04 05:16
【總結】拋物線的簡單幾何性質【學習目標】掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質.【自主學習】根據(jù)拋物線的標準方程)0(22??ppxy,研究它的幾何性質:1.范圍2.對稱性3.頂點4.離心率拋物線上的點M與焦點的距離和它到準線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
【總結】B'C'CBA251213A'xOy雙曲線的簡單幾何性質(一)【學習目標】掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質.【自主學習】雙曲線的簡單幾何性質:1.范圍、對稱性2.頂點頂點:??0,),0,(21aAaA?特殊點:
【總結】10xy-110xy-11-221【學習目標】,領會“曲線的方程”與“方程的曲線”的概念及其關系新疆學案王新敞、函數(shù)與方程、化歸與轉化等數(shù)學思想,以及坐標法、待定系數(shù)法等常用的數(shù)學方法新疆學案王新敞【自主學習】請回答如下問題:在直角坐標系中、三象限的角平分線的方程為:
2024-11-19 23:25
【總結】充要條件【學習目標】理解充要條件的定義.【自主學習】研讀教材,回答下列問題:三、已知p:整數(shù)a是6的倍數(shù),q:整數(shù)a是2和3的倍數(shù).那么p是q的什么條件?q是p的什么條件?(1)上述問題中,p?q,故p是q的條件,q是p的條件;另一方面,q?
【總結】aC'B'A'D'DABCGMC'B'A'D'DABC空間向量及其加減數(shù)乘運算【學習目標】,掌握空間向量的線性運算及其性質;、減法、數(shù)乘及它們的運算律;【自主學習】空間向量,談談空間向量的概念、表示方法。思考:
【總結】空間向量及其運算【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐。【學習目標】1.理解空間向量的概念,掌握其表示方法;2.會用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運算律;3.能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.【重點】能用空間向量的運算意義及運算律解決
2024-11-18 16:52