【總結(jié)】向量的減法【學習目標】;;、減得混合運算【學習重難點】重點:三角形法則難點:三角形法則,向量加、減混合運算【自主學習】:①a與b的差:若__________________,則向量x叫做a與b的差,記為__________②向量a與b的減法:求兩個向量差的運
2025-11-10 12:31
【總結(jié)】弧度制【學習目標】1.理解弧度制的意義,能正確地進行弧度與角度的換算,熟記特殊角的弧度數(shù)2.掌握弧度制下的弧長公式和扇形的面積公式,會利用弧度制解決某些簡單的實際問題3.了解角的集合與實數(shù)集之間可以建立起一一對應的關系【學習重點、難點】弧度的概念,弧度與角度換算【自主學習】一、復習引入請同學們回
2025-11-10 12:32
【總結(jié)】三角函數(shù)的誘導公式(第一課時)如何求??cos150思考xyO想到的三角函數(shù)值與角的三角函數(shù)值可能存在一定的關系?150?30為了使討論具有一般性,我們來研究任意角的三角函數(shù)值的求法.??150?30(一)復習提問,引入新課
2025-11-09 01:22
【總結(jié)】§三角函數(shù)的誘導公式(2)(課前預習案)班級:___姓名:________編寫:一、新知導學2???的誘導公式公式四cos()2???=sin()2???=tan()2???=2.α與2????
2025-11-18 23:50
【總結(jié)】§單位圓與三角函數(shù)線(課前預習案)班級:___姓名:________編寫:一、新知導學1、單位圓:一般地,我們把的圓叫做單位圓。2、三角函數(shù)線:設任意角α的頂點在坐標原點O,始邊與x軸的重合,終邊與單位圓(圓心在原點,半徑為單位長
2025-11-19 01:12
【總結(jié)】1.2.1任意角的三角函數(shù)(1)一.學習要點:三角函數(shù)的定義、符號分布、誘導公式二.學習過程:(一)復習:初中銳角的三角函數(shù)是如何定義的?(二)新課學習:1.三角函數(shù)定義在直角坐標系中,設?是一個任意角,?終邊上任意一點P(除了原點)的坐標為(,)xy,它與原點的距離為2222(||||0
2025-11-10 06:26
【總結(jié)】1.2.1任意角的三角函數(shù)(2)一.學習要點:單位圓中的三角函數(shù)線及其簡單應用二.學習過程:(一)復習:1.三角函數(shù)的定義及定義域、值域:2.三角函數(shù)的符號分布:3.誘導公式:(二)新課學習:1.單位圓:圓心在圓點O,半徑等于單位長的圓叫做單位圓.2.有向線段:坐標軸是規(guī)定了方向的直線,那么與之平行的線段
2025-11-09 16:46
【總結(jié)】§班級姓名學號得分一.選擇題y=|sin|sinxx+cos|cos|xx+|tan|tanxx的值域是()(A){-1,1}(B){-
2025-11-02 08:07
【總結(jié)】§同角三角函數(shù)的基本關系式(課前預習案)班級:___姓名:________編寫:一、新知導學同角三角函數(shù)關系式:(1)平方關系:;(2)商數(shù)關系:.二、課前自測:(1)22(cos30)(sin30
2025-11-18 23:51
【總結(jié)】特殊角的三角函數(shù)年級:班級:姓名:日期:編者:一、學習目標:30o、45o、60o等特殊角的三角函數(shù)值,并會求一些簡單的含有特殊角的三角函數(shù)的表達式的值。、余弦值知道該銳角的大小。二、學習內(nèi)容::(1)假如∠A=30&
2025-11-10 13:31
【總結(jié)】第1講 任意角和弧度制及任意角的三角函數(shù)考試要求 ,弧度制的概念,弧度與角度的互化,A級要求;(正弦、余弦、正切)的定義,B級要求.知識梳理1.角的概念的推廣(1)定義:角可以看成平面內(nèi)的一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形.(2)分類(3)終邊相同的角:所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個集合S={β|β=α+k·
2025-08-04 23:44
【總結(jié)】向量的數(shù)乘(1)【學習目標】,會確定向量數(shù)乘后的方向和模;,并會用它進行計算;,滲透類比思想和化歸思想【學習重難點】重點:向量的數(shù)乘及運算律;難點:向量的數(shù)乘及運算律;【自主學習】:一般地,實數(shù)?與向量a的積是一個向量,記作:_______;它的長度和方向規(guī)定如下:(1)|||
【總結(jié)】2.4.1向量的數(shù)量積(1)【學習目標】1.理解平面向量數(shù)量積的概念及其幾何意義2.掌握數(shù)量積的運算法則3.了解平面向量數(shù)量積與投影的關系【預習指導】1.已知兩個非零向量a與b,它們的夾角為?,則把數(shù)量_________________叫做向量a與b的數(shù)量積(或內(nèi)積)。規(guī)定:零
2025-11-09 19:55
【總結(jié)】已知三角函數(shù)值求角(二)一.學習要點:已知三角函數(shù)值求角二.學習過程:一、復習:1.反正弦,反余弦函數(shù)的意義:2.已知三角函數(shù)求角:二、講解新課:反正切函數(shù)三、講解范例:例1(1)已知?????????2,231tan??xx且,求x
2025-11-18 23:47
【總結(jié)】向量的數(shù)乘(2)【學習目標】;;【學習重難點】重點:向量的共線定理;難點:向量的共線定理;【自主學習】:若果,(0)baa???,則稱向量b可以用非零向量a線性表示;:思考:向量共線定理中有0a?這個限制條件,若無此條件,會有什么結(jié)果?【典型例題】
2025-11-19 16:29