【總結】能得到直角三角形嗎古埃及人曾用下面的方法得到直角:他們用13個等距離的結把一根繩子分成等長的12段,一個工匠同時握住第一個結和第13個結,兩個助手分別握住第4個結和第8個結,拉緊繩子,就會得到一個直角三角形,其直角在第4個結處。做一做下列的五組數(shù)分別是一個三角形的三邊長a,b,c:①3,4,5;
2024-11-09 12:19
【總結】初中數(shù)學(北師大版)八年級上冊第一章勾股定理知識點一勾股定理的逆定理及其簡單應用定義解題步驟勾股定理的逆定理如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形(1)先比較a,b,c的大小,找出最大邊長;(2)計算兩較小邊長的平方和以及最大邊長的平方;(
2025-06-15 07:22
【總結】直角三角形的性質(zhì)復習提問三角形按角是怎樣分類的?三角形銳角三角形直角三角形鈍角三角形想一想直角三角形的兩個銳角有什么關系?定理1直角三角形的兩個銳角互余??凑l做的快!1、△在ABC中,∠C=90°,∠A=30°,∠B=?2、直角三角形的兩
2024-11-09 03:55
【總結】一個直角三角形房梁如圖所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C⊥AC1,垂足分別是B1、C1,那么BC的長是多少?B1C1呢?用心想一想,馬到功成B1C1CBA解:在Rt△ABC中,∠CAB=30°,AB=
2024-11-30 15:00
【總結】用心想一想,馬到功成小明在證明“等邊對等角”時,通過作等腰三角形底邊的高來證明。過程如下:已知:在△ABC中,AB=AC.求證:∠B=∠C.證明:過A作AD⊥BC,垂足為C,∴∠ADB=∠ADC=90°又∵AB=AC,AD=AD,
2024-11-30 12:48
【總結】能得到直角三角形嗎有一個問題想請教大家用什么辦法來確定昨天我給大家的三角形是直角三角形?我聽說用一把刻度尺就可以判定它是否是直角三角形了,這是真的嗎?閱讀P9的課文1、這段課文說得是什么?2、依照課文所說的做一做:把一條線段分成12等份,在第三、第七等分處折成一個三角形,并量一量最大角是多少度。3、這個三角形的三邊分別
2024-11-30 00:25
【總結】課題、直角三角形(一)課型新授課教學目標1、要求學生掌握直角三角形的性質(zhì)定理(勾股定理)和判定定理,并能應用定理解決與直角三角形有關的問題。2、了解逆命題、互逆命題及逆定理、互逆定理的含義,能結合自己的生活及學習體驗舉出逆命題、互逆命題及逆定理、互逆定理的例子。3、進一步掌握推理證明的方法,拓發(fā)展演繹推理能力,培養(yǎng)思維
2024-12-07 23:21
【總結】課題、直角三角形(二)課型新授課教學目標1、掌握直角三角形全等的判定定理,并能應用定理解決與直角三角形有關的問題。2、進一步掌握推理證明的方法,拓發(fā)展演繹推理能力,培養(yǎng)思維能力。教學重點直角三角形HL全等判定定理。教學難點直角三角形HL全等判定定理。教學方法講練結合法教具三角尺教學
【總結】能得到直角三角形嗎教學目的知識與技能:掌握直角三角形的判別條件,并能進行簡單應用;教學思考:進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學問題的能力,建立數(shù)學模型.解決問題:會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.情感態(tài)度與價值觀:敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知
2024-11-24 21:36
【總結】直角三角形第一章三角形的證明第2課時直角三角形全等的判定情境引入學習目標1.探索并理解直角三角形全等的判定方法“HL”.(難點)2.會用直角三角形全等的判定方法“HL”判定兩個直角三角形全等.(重點)SSSSASASAAAS舊知回顧:我們學過的判定三角形全等的方法
2025-06-15 03:56
【總結】直角三角形練習1、填空題:(1)在△ABC中,若∠A=∠B+∠C,則△ABC是(2)在△ABC中,∠C=90°,∠A=2∠B,則∠A=,∠B=。(3)在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,則△ABC是三角
2024-11-28 16:35
【總結】直角三角形一、學情分析學生在學習直角三角形全等判定定理“HL”之前,已經(jīng)掌握了一般三角形全等的判定方法,在本章的前一階段的學習過程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個定理的證明以及利用這個定理解決相關問題還是一個較高的要求。二、教學任務分析[來源:學_科_網(wǎng)]本節(jié)課是三角形全等的最后一部分內(nèi)容,也是很重要的一部分內(nèi)容
2024-11-24 22:38
【總結】直角三角形學習目標、重點、難點【學習目標】1、掌握直角三角形的判別條件,并能進行簡單應用;2、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.【重點難點】重點:探索并掌握直角三角形的判別條件.難點:運用直角三角形判別條件解題.知識概覽圖新
2024-12-08 09:11
【總結】九年級數(shù)學(上冊)第一章證明(二)(2)直角三角形全等的證明駛向勝利的彼岸三角形全等的判定?公理:三邊對應相等的兩個三角形全等(SSS).?公理:兩邊及其夾角對應相等的兩個三角形全等(SAS).?公理:兩角及其夾邊對應相等的兩個三角形全等(ASA).?推論:兩角及其中一角的對邊對應相等的兩個三角形全等(
【總結】九年級數(shù)學(上冊)第一章證明(二)(1)勾股定理與它的逆定理的證明駛向勝利的彼岸勾股定理?如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2+b2=斜邊的平方.勾股定理在西方文獻中又稱為畢達哥拉斯定理(pythagorastheorem).開啟智慧acb勾弦
2024-11-30 02:44