【總結(jié)】八年級(jí)上冊(cè)等腰三角形(第1課時(shí))課件說(shuō)明?本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了三角形的基本概念、全等三角形和軸對(duì)稱(chēng)知識(shí)的基礎(chǔ)上,進(jìn)一步研究特殊的三角形——等腰三角形,研究等腰三角形的底角、底邊上的中線、頂角平分線、底邊上的高所具有的性質(zhì).課件說(shuō)明?學(xué)習(xí)目標(biāo):1.探索并證明等腰三
2024-11-21 01:09
【總結(jié)】等腰三角形是軸對(duì)稱(chēng)圖形等腰三角形的兩底角相等等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合.復(fù)習(xí)3復(fù)習(xí)2復(fù)習(xí)1等腰三角形(2)OAB動(dòng)畫(huà)演示思考:如圖,位于海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得∠A=∠艘救生船以同樣的速度同時(shí)出發(fā),能不
2024-11-21 04:20
【總結(jié)】第一章三角形的證明等腰三角形第1課時(shí)全等三角形與等腰三角形的性質(zhì)1課堂講解?全等三角形?等腰三角形的邊、角性質(zhì)?等腰三角形的“三線合一”性質(zhì)2課時(shí)流程逐點(diǎn)導(dǎo)講練課堂小結(jié)作業(yè)提升活動(dòng):實(shí)踐觀察,認(rèn)識(shí)三角形DACB得到這個(gè)△A
2024-12-30 00:30
【總結(jié)】第一章三角形的證明1等腰三角形(第4課時(shí))學(xué)習(xí)目標(biāo)?1.探索一個(gè)三角形成為等邊三角形的條件并證明正確性.?有30°角的直角三角形的性質(zhì)及推理過(guò)程.?所學(xué)知識(shí)進(jìn)行相關(guān)的證明和計(jì)算.問(wèn)題已知△ABC中,∠A=60°,().請(qǐng)你在
2024-12-28 16:46
【總結(jié)】等腰三角形的性質(zhì)數(shù)科院李紫20222202225ABC⑴由“兩邊相等”得到“等腰三角形”.∵△ABC中,AB=AC,∴△ABC是等腰三角形.⑵由“等腰三角形”得到“兩邊相等”.如圖,∵△ABC是等腰三角
2025-08-01 13:41
【總結(jié)】等腰三角形的性質(zhì)倉(cāng)山鎮(zhèn)中蔣良全復(fù)習(xí)已知:∠A(如右圖)求作:射線AD,使AD平分∠A.基本作圖:平分已知角A實(shí)驗(yàn)研究等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊性質(zhì).DACBACBDACB猜想
2024-11-24 15:54
【總結(jié)】等腰三角形(2)要注意是哪三線?做一做2:畫(huà)出手中等腰三角形的某一底角平分線、對(duì)邊(腰)上的中線和高,看是否重合?等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,簡(jiǎn)稱(chēng)“三線合一”(1)“等腰三角形”是三線合一的大前提GECBAF如圖:BF為AC邊上的高,BE為
2024-11-24 15:11
【總結(jié)】等腰三角形(第1課時(shí))北師大版八年級(jí)數(shù)學(xué)下冊(cè)1、圖中有你熟悉的圖形嗎?它們有什么共同特點(diǎn)?斜拉橋梁埃及金字塔體育觀看臺(tái)架導(dǎo)入新知2、在八上的“平行線的證明”這一章中,我們學(xué)了哪8條基本事實(shí)?①兩點(diǎn)確定一條直線;②兩點(diǎn)之間線段最短;③同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直
2024-12-28 16:39
【總結(jié)】第七單元三角形、平行四邊形和梯形課題:等腰三角形和等邊三角形第2課時(shí)總第課時(shí)教學(xué)目標(biāo):,認(rèn)識(shí)并掌握等腰三角形和等邊三角形的基本特征。,進(jìn)一步發(fā)展學(xué)生的空間觀念。,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的好奇心,提高動(dòng)手能力,培養(yǎng)創(chuàng)新意識(shí)。教學(xué)重點(diǎn):認(rèn)識(shí)等腰三角形和等邊三角形以及它們的特征。教學(xué)難點(diǎn):發(fā)現(xiàn)等腰三角形和等
2024-11-24 16:50
【總結(jié)】第一章三角形的證明1等腰三角形(第2課時(shí))學(xué)習(xí)目標(biāo)?格式.?結(jié)論.?定理.ABCD,簡(jiǎn)稱(chēng)“等邊對(duì)等角”.頂角平分線、底邊上的中線、底邊上的高互相重合.簡(jiǎn)稱(chēng)“三線合一”.復(fù)習(xí)舊知已知:如圖,在△ABC中,AB=AC,
2025-01-01 08:05
【總結(jié)】第一章三角形的證明1等腰三角形(第3課時(shí))學(xué)習(xí)目標(biāo)?1.學(xué)會(huì)證明等角對(duì)等邊,并進(jìn)行等腰三角形的判定.?反證法,并會(huì)用反證法進(jìn)行證明.?證明的書(shū)寫(xiě)過(guò)程.請(qǐng)同學(xué)們回答下面的問(wèn)題:等腰三角形的性質(zhì)是什么?①有兩個(gè)相等的角.②有兩條相等的邊.③底邊上的中線、高和頂角的平分線重合
2024-12-31 06:07
【總結(jié)】THANKS
2025-03-13 07:51
【總結(jié)】細(xì)心觀察積極探索在觀察中發(fā)現(xiàn)特點(diǎn)在探索中提高能力讓我們一起走進(jìn)美麗的數(shù)學(xué)世界活動(dòng)(一):細(xì)心觀察活動(dòng)(一):細(xì)心觀察活動(dòng)(一):細(xì)心觀察
2024-11-24 13:18
【總結(jié)】等腰三角形的性質(zhì)1:等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)注意:在三角形中,等邊對(duì)等角。一個(gè)用符號(hào)語(yǔ)言表示為:在△ABC中,∵AC=AB()∴∠B=∠C(
2025-07-21 04:13
【總結(jié)】觀察:下列不同形狀的三角形,哪些是等腰三角形。(1)(2)(3)(4)等腰三角形;腰;;兩腰的夾角叫頂角,底角。ABCDE圖中,線段AD叫做三角形的高;線段BE叫做三角形的中線
2025-08-16 01:37