【文章內(nèi)容簡介】
Unc oded Co d e d Yie ldX 1 X 2 X 1*X 2*Y30 150 1 1 3 9 .340 150 1 1 4 0 .930 160 1 1 4 0 .040 160 1 1 4 1 .535 155 0 0 4 0 .335 155 0 0 4 0 .535 155 0 0 4 0 .735 155 0 0 4 0 .235 155 0 0 4 0 .611 Example Stat ? DOE ? Factorial ? Analyze Factorial Design 12 Example Session Window Fractional Factorial Fit: Yield versus Time, Temperature Estimated Effects and Coefficients for Yield (coded units) Term Effect Coef SE Coef T P Constant Time Temperature Time*Temperature Ct Pt Ignore “timetemperature” interaction, . analyze as a FirstOrder Model. 13 Example Session Window Fractional Factorial Fit: Yield versus Time, Temperature (Interaction Excluded) Estimated Effects and Coefficients for Yield (coded units) Term Effect Coef SE Coef T P Constant Time Temperature Ct Pt 21 ???The FirstOrder Model is valid. 14 Example 4 03 51 5 03 9 . 5T i m e4 0 . 54 1 . 51 5 5Y i e l d3 01 6 0T e m p e r a t u r e21 ??? eTem perat d ???15 Analysis of SecondOrder Models Methods to analyze SecondOrder Response Surfaces include: ? 3k Factorial Designs ? BoxBehnken Designs ? Central Composite Designs We will pare 3factor variants of these designs. 16 3k Factorial Designs S t d Or d e r A B C1 1 1 12 1 1 03 1 1 14 1 0 15 1 0 06 1 0 17 1 1 18 1 1 09 1 1 110 0 1 111 0 1 012 0 1 113 0 0 114 0 0 015 0 0 116 0 1 117 0 1 018 0 1 119 1 1 120 1 1 021 1 1 122 1 0 123 1 0 024 1 0 125 1 1 126 1 1 0