【總結(jié)】北方民族大學(xué)信計(jì)學(xué)院第二章貝葉斯決策理論模式識別理論及應(yīng)用PatternRecognition-MethodsandApplication內(nèi)容目錄第二章貝葉斯決策理論引言基于判別函數(shù)的分類器設(shè)計(jì)基于最小錯(cuò)誤率的Bayes決策基于最小風(fēng)險(xiǎn)的Bayes決策正態(tài)分布的最小錯(cuò)誤率Baye
2025-10-07 21:28
【總結(jié)】貝葉斯決策論和參數(shù)估計(jì)孟濤2022年4月11日提綱?貝葉斯決策論?最小誤差率分類?分類器、判別函數(shù)及判定面?正態(tài)密度和判別函數(shù)?貝葉斯置信網(wǎng)?最大似然估計(jì)?貝葉斯估計(jì)貝葉斯決策論?貝葉斯公式?貝葉斯公式的意義?判定的誤差概率?平均誤差概率?四
2025-08-04 07:04
【總結(jié)】第2章貝葉斯決策理論,2.0基本概念2.1最小錯(cuò)誤概率的Bayes決策2.2最小風(fēng)險(xiǎn)的Bayes決策2.3Neyman-Pearson決策2.4Bayes估計(jì)和Bayes學(xué)習(xí)2.5正態(tài)分布時(shí)的Baye...
2024-11-17 22:47
【總結(jié)】第二章基于貝葉斯決策理論的分類器ClassifiersBasedonBayesDecisionTheory§1引言§2Bayes決策理論最小錯(cuò)誤率的貝葉斯決策最小風(fēng)險(xiǎn)的貝葉斯決策§3Bayes分類器和判別函數(shù)§4正態(tài)分布的
2025-03-10 14:15
【總結(jié)】基于最小風(fēng)險(xiǎn)的貝葉斯決策?問題的提出:風(fēng)險(xiǎn)的概念?風(fēng)險(xiǎn)與損失緊密相連,如病情診斷、商品銷售、股票投資等問題?日常生活中的風(fēng)險(xiǎn)選擇,即所謂的是否去冒險(xiǎn)?最小風(fēng)險(xiǎn)貝葉斯決策正是考慮各種錯(cuò)誤造成損失不同而提出的一種決策規(guī)則?對待風(fēng)險(xiǎn)的態(tài)度:“寧可錯(cuò)殺一千,也不放走一個(gè)”以決策論的觀點(diǎn)?決策空間:所有可能采取的
2025-03-09 12:50
2025-03-10 14:22
【總結(jié)】武漢大學(xué)電子信息學(xué)院第二章貝葉斯決策理論模式識別理論及應(yīng)用PatternRecognition-MethodsandApplication內(nèi)容目錄第二章貝葉斯決策理論引言基于判別函數(shù)的分類器設(shè)計(jì)基于最小錯(cuò)誤率的Bayes決策基于最小風(fēng)險(xiǎn)的Bayes決策正態(tài)分布的最小錯(cuò)誤率B
2025-01-06 10:18
【總結(jié)】現(xiàn)代信息決策方法2-5貝葉斯決策第三節(jié)風(fēng)險(xiǎn)型決策常用的風(fēng)險(xiǎn)型決策方法:(一)最大可能法(二)期望值決策(三)決策樹決策(四)貝葉斯決策(五)效用決策設(shè)不確定型決策問題的狀態(tài)出現(xiàn)的概率為(或)連續(xù)時(shí)記為。
2025-01-14 05:28
2025-08-04 10:26
【總結(jié)】課前思考?機(jī)器自動(dòng)識別分類,能不能避免錯(cuò)分類??怎樣才能減少錯(cuò)誤??不同錯(cuò)誤造成的損失一樣嗎??先驗(yàn)概率,后驗(yàn)概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗(yàn)概率,類概率密度函數(shù),后驗(yàn)概率這
2025-02-06 05:59
【總結(jié)】4貝葉斯估計(jì)方法Bayes推理的提出Bayes推理的基本思想Bayes推理公式Bayes推理應(yīng)用實(shí)例基于Bayes推理的數(shù)據(jù)融合方法融合實(shí)例Bayes推理的缺點(diǎn)2Bayes推理的提出貝葉斯ThomasBayes英國數(shù)學(xué)家。1702年出生于倫敦,做過神
2025-05-07 01:38
【總結(jié)】第一節(jié)貝葉斯推斷方法第二節(jié)貝葉斯決策方法第十一章貝葉斯估計(jì)第一節(jié)貝葉斯推斷方法一、統(tǒng)計(jì)推斷中可用的三種信息美籍波蘭統(tǒng)計(jì)學(xué)家耐曼(-1981)高度概括了在統(tǒng)計(jì)推斷中可用的三種信息:1.總體信息,即總體分布或所屬分布族給我們的信息。譬如“總體視察指數(shù)分布”或“總體是正態(tài)
2025-05-07 01:39
【總結(jié)】貝葉斯估計(jì)BayesEstimation數(shù)理統(tǒng)計(jì)課題組例子:?某人打靶,打了5槍,槍槍中靶,?問:此人槍法如何??某人打靶,打了500槍,槍槍中靶,?問:此人槍法如何??經(jīng)典方法:極大似然估計(jì):100%?但是:……幾個(gè)學(xué)派(1)?經(jīng)典學(xué)派:頻率學(xué)派,抽樣學(xué)派?帶頭
2025-07-24 08:52
【總結(jié)】 貝葉斯估計(jì)與貝葉斯學(xué)習(xí) 貝葉斯估計(jì)與貝葉斯學(xué)習(xí) 貝葉斯估計(jì)是概率密度估計(jì)的一種參數(shù)估計(jì),它將參數(shù)估計(jì)看成隨機(jī)變量,它需要根據(jù)觀測數(shù)據(jù)及參數(shù)鮮艷概率對其進(jìn)行估計(jì)。 一貝葉斯估計(jì)(1)貝葉斯估計(jì)...
2025-09-20 20:31
【總結(jié)】第七節(jié)貝葉斯公式全概率公式和貝葉斯公式主要用于計(jì)算比較復(fù)雜事件的概率,它們實(shí)質(zhì)上是加法公式和乘法公式的綜合運(yùn)用.綜合運(yùn)用加法公式P(A+B)=P(A)+P(B)A、B互斥乘法公式P(AB)=P(A)P(B|A)P(A)0例1有三個(gè)箱子,分別編號為1,
2025-08-15 23:46