【總結(jié)】課題:任意角的三角函數(shù)(2)一:學(xué)習(xí)目標(biāo)1.進(jìn)一步掌握任意角的正弦、余弦、正切的定義,會(huì)用角α的正弦線、余弦線、正切線分別表示任意角α的正弦、余弦、正切函數(shù)值;2.進(jìn)一步掌握正弦、余弦、正切的函數(shù)的定義域和這三種函數(shù)的值在各象限的符號(hào)。二:課前預(yù)習(xí)(1)已知角?的終邊經(jīng)過(guò)點(diǎn)(1,2)?,則cos?的值為_(kāi)____
2024-11-20 01:06
【總結(jié)】2021-1-23高中數(shù)學(xué)蘇教版必修4三角函數(shù)知識(shí)點(diǎn)總結(jié)一、角的概念和弧度制:(1)在直角坐標(biāo)系內(nèi)討論角:角的頂點(diǎn)在原點(diǎn),始邊在x軸的正半軸上,角的終邊在第幾象限,就說(shuō)過(guò)角是第幾象限的角。若角的終邊在坐標(biāo)軸上,就說(shuō)這個(gè)角不屬于任何象限,它叫象限界角。(2)①與?角終邊相同的角的集合:},2|{},360|{0ZkkZkk?????
2024-12-18 04:37
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第3章《三角恒等變形》3二倍角的三角函數(shù)(1)導(dǎo)學(xué)案北師大版必修4【學(xué)習(xí)目標(biāo)】1.探索、發(fā)現(xiàn)并推導(dǎo)二倍角公式,了解公式之間的內(nèi)在聯(lián)系.2.掌握二倍角公式的特征,靈活應(yīng)用公式解決與二倍角有關(guān)的求值問(wèn)題.
2024-11-19 23:19
【總結(jié)】第三章三角恒等變形,第一頁(yè),編輯于星期六:點(diǎn)三十六分。,§3二倍角的三角函數(shù)(2),第二頁(yè),編輯于星期六:點(diǎn)三十六分。,,自主學(xué)習(xí)梳理知識(shí),課前基礎(chǔ)梳理,第三頁(yè),編輯于星期六:點(diǎn)三十六分。,,第四頁(yè),...
2024-10-22 18:58
【總結(jié)】三角函數(shù)的應(yīng)用一、填空題1.某人的血壓滿足函數(shù)式p(t)=120+20sin(160πt),其中p(t)為血壓(mmHg),t為時(shí)間(min),則此人每分鐘心跳次數(shù)是________.2.如圖所示,單擺從某點(diǎn)開(kāi)始來(lái)回?cái)[動(dòng),離開(kāi)平衡位置O的距離scm和時(shí)間ts的函數(shù)關(guān)系式為s=6sin??????2πt+π6,那么
2024-12-05 10:16
【總結(jié)】第三章三角恒等變形,第一頁(yè),編輯于星期六:點(diǎn)三十五分。,§3二倍角的三角函數(shù)(1),第二頁(yè),編輯于星期六:點(diǎn)三十五分。,,自主學(xué)習(xí)梳理知識(shí),課前基礎(chǔ)梳理,第三頁(yè),編輯于星期六:點(diǎn)三十五分。,,第四頁(yè),...
【總結(jié)】任意角的三角函數(shù)任意角的三角函數(shù)(一)一、填空題1.當(dāng)α為第二象限角時(shí),|sinα|sinα-cosα|cosα|的值是________.2.角α的終邊經(jīng)過(guò)點(diǎn)P(-b,4)且cosα=-35,則b的值為_(kāi)_______.3.已知sinθ2tanθ0,則角θ位于第___
2024-12-05 03:25
【總結(jié)】課題:同角三角函數(shù)關(guān)系班級(jí):姓名:【學(xué)習(xí)目標(biāo)】,并體會(huì)它們?cè)谌呛瘮?shù)式的化簡(jiǎn)、求值和三角恒等式證明中的應(yīng)用。【課前預(yù)習(xí)】1、角?的終邊經(jīng)過(guò)點(diǎn)(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
2024-12-05 10:17
【總結(jié)】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡(jiǎn)sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
【總結(jié)】第一章三角函數(shù)正余弦函數(shù)的圖象和性質(zhì)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)定義域
2024-11-17 23:32
【總結(jié)】二倍角的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1、以兩角和正弦、余弦和正切公式為基礎(chǔ),推導(dǎo)二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運(yùn)用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2024-11-18 08:49
【總結(jié)】第一篇:高中數(shù)學(xué)-三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsi...
2024-10-11 20:10
【總結(jié)】二倍角的正弦、余弦、正切二倍角的正弦、余弦、正切二倍角的正弦、余弦、正切二倍角的正弦、余弦、正切二倍角的正弦、余弦、正切二倍角的正弦、余弦、正切返回教學(xué)目的:1、能推導(dǎo)二倍角公式,并能體會(huì)與和(差)角公式間的聯(lián)系;2、能掌握二倍角的正弦、余弦、正切公式;并用公式進(jìn)行簡(jiǎn)3、能體會(huì)“化歸思想”的作用,并掌握好。二倍角公式的推導(dǎo)、C2?的兩種變形
2024-11-06 22:00
2024-12-09 03:46
【總結(jié)】江蘇省建陵高級(jí)中學(xué)2021-2021學(xué)年高中數(shù)學(xué)三角函數(shù)的導(dǎo)學(xué)案蘇教版必修4課題:班級(jí):姓名:一:學(xué)習(xí)目標(biāo)1.會(huì)用三角函數(shù)解決一些簡(jiǎn)單的問(wèn)題,體會(huì)三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型。2.觀察函數(shù)圖像,學(xué)會(huì)用待定系數(shù)法求解析式,能夠?qū)⑺l(fā)現(xiàn)的規(guī)律抽象