【總結】空間兩點間的距離【課時目標】1.掌握空間兩點間的距離公式.2.能夠用空間兩點間距離公式解決簡單的問題.1.在空間直角坐標系中,給定兩點P1(x1,y1,z1),P2(x2,y2,z2),則P1P2=______________________________________________________________
2024-12-05 10:19
【總結】【志鴻全優(yōu)設計】2021-2021學年高中數學空間兩點間的距離公式課后訓練北師大版必修21.已知△ABC的三個頂點為A(3,3,2),B(4,-3,7),C(0,5,1),則BC邊上的中線長為().A.2B.3C.4D.52.點P(-6,-8,10)到x軸的距離是().
2024-12-03 03:16
【總結】L1:y=k1x+b1L2:y=K2x+b2(K1,k2均存在)L1:A1X+B1Y+C1=0L2:A2X+B2Y+C2=0(A1B1C1≠0,A2B2C2≠0)平行K1=K2且b1≠b2重合K1=K2且b1=b2相交K1≠K2垂直K1k2=-1212121CCBB
2025-08-16 01:46
【總結】人教B版數學必修2:空間兩點間的距離公式1.教學任務分析通過特殊到一般的情況推導出空間兩點間的距離公式2.教學重點和難點重點:空間兩點間的距離公式難點:一般情況下,空間兩點間的距離公式的推導。3.教學基本流程4、
2024-11-19 23:22
【總結】【目標導學】兩點間距離公式的方法;解決簡單幾何問題;解析法證明平面幾何問題的方法.江蘇如東馬塘中學輕水長天【主體自學】看書p115-116【排憂解惑】兩點間距離公式xy
2024-11-19 13:08
【總結】解析幾何兩點間距離公式xyP1(x1,y1)P2(x2,y2)Q(x2,y1)Ox2y2x1y1兩點間距離公式xyP1(x1,y1)P2(x2,y2)Q(x2,y1)O兩點間距離公式xyP(x,y)O(0,0)|y||x|
2024-11-10 05:06
【總結】一、空間直角坐標系建立以單位正方體的頂點O為原點,分別以射線OA,OC,的方向為正方向,以線段OA,OC,的長為單位長,建立三條數軸:x軸,y軸,z軸,這時我們建立了一個空間直角坐標系CBADOABC?????xyzO?
2024-11-18 09:33
【總結】問題探究;,,,,,) ?。?;,,,,,) ?。ň嚯x:兩點,再求它們之間的,標出:在空間直角坐標系中 探究)753()106(2)413()532(11BABABA。與原點間的距離是,,一點中,任意:在空間直角坐標系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長:如果
2024-11-17 03:40
【總結】§空間兩點間的距離公式一、教材分析平面直角坐標系中,兩點之間的距離公式是學生已學的知識,不難把平面上的知識推廣到空間,遵循從易到難、從特殊到一般的認識過程,利用類比的思想方法,借助勾股定理得到空間任意一點到原點的距離;從平面直角坐標系中的方程x2+y2=r2表示以原點為圓心,r為半徑的圓,推廣到空間
2024-12-03 11:32
【總結】空間兩點間的距離習題課蘇教版必修2【課時目標】1.正確理解直線與圓的概念并能解決簡單的實際問題.2.能利用直線與圓的位置關系解決簡單的實際問題.3.體會用代數方法處理幾何問題的思想.用坐標方法解決平面幾何問題的“三步曲”:一、填空題1.實數x,y滿足方程x+y-4=0,則x2+y2的最小值為_
【總結】問題探究;,,,,,) (;,,,,,) (距離:兩點,再求它們之間的,標出:在空間直角坐標系中 探究)753()106(2)413()532(11BABABA。與原點間的距離是,,一點中,任意:在空間直角坐標系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長:如果 探
2025-03-12 14:58
【總結】?復習回顧2121(,)ABxxyy???向量的大?。ㄩL度)2.(1,3),(4,1),ABAB?已知則向量的坐標和模分別是多少?(3,4)AB??5AB?11223.(,),(,),AxyB
2025-07-26 12:40
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數學第2課時空間圖形的公理(公理4,定理)課時訓練北師大版必修2一、選擇題1.(2021·杭州高一檢測)一條直線與兩條平行線中的一條為異面直線,則它與另一條()A.相交B.異面C.相交或異面D.平行【解析】可能相交
2024-12-03 03:21
【總結】人教B版數學必修2:空間兩點的距離公式教學目標:探索并得出空間兩點間的距離公式教學重點:探索并得出空間兩點間的距離公式教學過程:給定空間兩點),,(1111zyxM和),,(2222zyxM,過21,MM各作三個平面分別垂直于三個坐標軸。這六個平面構成—個以線段21MM為一條對角線的長方體,見圖
2024-11-19 23:21
【總結】成都市第三十八中學校英語閱讀理解專項練習試卷 一、中考英語閱讀理解 1.閱讀理解 ???Dronesareakindofmachinethatcanfly.Peopleuseaputerto...
2025-04-02 02:14