【文章內(nèi)容簡介】
k and Julian Serda High Density Plasma Etcher Photograph courtesy of Applied Materials, Metal Etch DPS Photo 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Schematic of Electron Cyclotron Reactor Microwave source MHz Wave guide Diffuser Quartz window Electrostatic chuck Cyclotron mag Plasma chamber Wafer Additional mag MHz Vacuum system Redrawn from Y. Lii, “Etching,” ULSI Technology, ed. by C. Chang S. Sze, (New York: McGrawHill, 1996), p. 349. Figure 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Inductively Coupled Plasma Etch Electromag Dielectric window Inductive coil Biased wafer chuck RF generator Bias RF generator Plasma chamber Redrawn from Y. Lii, “Etching,” ULSI Technology, ed. By C. Chang and S. Sze (New York: McGrawHill, 1996), p. 351. Figure 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Dual Plasma Source (DPS) Decoupled plasma chamber Turbo pump Lower chamber Cathode Wafer Capacitivelycoupled RF generator (bias power) Inductivelycoupled RF generator (source power) Redrawn from Y. Ye et al, Proceedings of Plasma Processing XI, vol. 9612, ed. by G. Mathad and M. Meyyappan (Pennington, NJ: The Electrochemical Society, 1996), p. 222. Figure 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Magically Enhanced Reactive Ion Etch (MERIE) Electromag (1 of 4) MHz Biased wafer chuck Wafer Redrawn from Wet/Dry Etch (College Station, TX: Texas Engineering Extension Service, 1996), p. 165. Figure 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Dry Etcher Configurations Co n f igu r at ion s Ac t ivit yP r e s s u r e( T or r )Ar r ange m e n tHighDe n s it yP l a s m aB ias in gB iasS our c eP r of i l eB a r r e l R e a c t i v e 101 to 1C o i l o r e l e c t r o de s o u t s i dev e s s e lNo I n c a s s e tt e ( b u l k) RF I s ot r o pi cP a r a l l e l P l a t e ( P l a s m a ) R e a c t i v e 101 to 1 P l a n a r d i o de ( t w o e l e c t r o de s ) NoOn po we r e de l e c t r o de ( a n o de )RF An i s o t r o pi cDo wn s t r e a m P l a s m a R e a c t i v e 101 to 1C o i l o r e l e c t r o de s o u t s i dev e s s e lNoI n c a s s e tt e ( b u l k)do wn s t r e a m o fp l a s m aR F o rM i c r o wa v eI s ot r o pi cT r i o de P l a n a r R e a c t i v e 103T r i o de ( t h r e e e l e c t r o de s ) NoOn p l a t f o r me l e c t r o deAn i s o t r o pi cI o n B e a m M i ll i ng I n e r t 104P l a n a r t r i o de NoOn po we r e de l e c t r o de ( a n o de )An i s o t r o pi cR e a c t i v e I o n E t c h( R I E )R e a c t i v e 0. 1 P l a n a r o r c y l i ndr i c a l d i o de No On c a t h o de An i s o t r o pi cE l e c t r o n C y c l o t r o nR e s o n a n c e ( E C R )R e a c t i v e10 4 t o 103( l o w)M a g n e t i c f i e l d i n pa r a ll e l w i t hp l a s m a f l o wYe s On c a t h o de R F o r DC An i s o t r o pi cD i s t r i b ut e d E C R R e a c t i v e ( l o w)M a g n e t s d i s t r i b ut e d a r o un dc e n t r a l p l a s m aYe s On c a t h o de R F o r DC An i s o t r o pi cI n duc t i v e ly C o upl e dP l a s m a ( I C P )R e a c t i v e ( l o w)S p i r a l c o i l s e pa r a t e d f r o mp l a s m a by d i e l e c t r i c p l a t eYe s On c a t h o de R F o r DC An i s o t r o pi cHe l i c o n W a v e R e a c t i v e ( l o w)P l a s m a ge n e r a t e d bye l e c t r o m a g n e t s a n d p l a s m ade ns i t y m a i n t a i ne d a t wa f e r bym a g n e t i c f i e l dYe s On c a t h o de R F o r DC An i s o t r o pi cDu a l P l a s m a S o ur c e R e a c t i v e ( l o w)I n de pe n de n t pl a s m a a n d wa f e rbi a s i n gYe s On c a t h o de R F o r DC An i s o t r o pi cM a g n e t i c a ll yE nh a n c e d R I E( M E R I E )R e a c t i v e ( l o w)P l a n a r d i o de w i t h m a g n e t i cf i e l d c o nf i n i ng p l a s m aYe s On c a t h o de R F o r DC An i s o t r o pi cTable 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Endpoint Detection for Plasma Etching Endpoint detection Normal etch Change in etch rate detection occurs here. Endpoint signal stops the etch. Time Etch Parameter Figure 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Characteristic Wavelengths of Excited Species in Plasma Etch M a t e r i a l E t c h a n t Ga sE m i t t i n g S p e c i e s o fso m e Pr o d u c t sW a v e l e n g t h ( n m )S i l i c o nCF4/O2Cl2S i FS i C l4 4 0 。 7 7 72 8 7S i O2C H F3CO 4 8 4A l u min u mCl2BCl3AlA l C l3 9 1 。 3 9 4 。 3 9 62 6 1P h o t o r e si stO2COOHH4 8 43 0 96 5 6N i t r o g e n( i n d i c a t i n gc h a mb e r v a c u u ml e a k )N2NO3 3 72 4 8Table 169。 2023 by Prentice Hall Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda Endpoint Detection Photograph courtesy of Advanced Micro Devices, Lam Rainbow etcher 169。 2023 by Prentice Hall Semiconductor Manuf