【總結】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識別等腰三角形的有關邊、角條件
2024-11-09 05:34
【總結】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2025-08-16 00:54
2025-08-16 01:46
【總結】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質1、等腰三角形的兩底角相等:∠B=∠C性質2、等腰三角形三線合一性質3、等腰三角形是軸對稱圖形,
2025-08-05 10:34
【總結】第一篇:等腰三角形 全等三角形 一、教學目標 探索并掌握兩個三角形全等的條件:“ASA”“AAS”, 經歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達、邏輯推理等能力;并通過對知識方...
2024-11-15 06:05
【總結】八年級上冊等腰三角形(第4課時)課件說明?本節(jié)課在學習了軸對稱、等邊三角形的性質及判定的基礎上,探究直角三角形的一條特殊性質,它反映了直角三角形中的邊角關系.本節(jié)課是等邊三角形性質的簡單運用,同時也為九年級學習銳角三角函數作了一定的知識儲備.?學習目標:1.探索含30°角
2024-11-24 15:53
【總結】ACB腰腰底邊頂角底角底角一起回憶復習概念在△ABC中(1)∵AB=AC,AD⊥BC,∴∠___=∠___,____=____;(2)∵AB=AC,AD是中線,∴∠_=∠_,____⊥____;(3)∵AB=AC,AD是角平分線,∴____⊥____,____=
2025-08-15 20:34
【總結】等腰三角形的性質定理1、從邊看:等腰三角形的兩腰相等。(定義)2、從角看:等腰三角形的兩底角相等。(性質定理1)3、從重要線段看:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。(性質定理2)定義:有兩邊相等的三角形是等腰三角形。如何判定一個三角形是等腰三角形?還有其他方法嗎?等腰三角形的兩底角相等,
2024-11-24 13:18
【總結】......等腰三角形考點一、等腰三角形的特征和識別⑴等腰三角形的兩個_____________相等(簡寫成“________________”)⑵等腰三角形的_________________、__________
2025-04-17 08:21
【總結】三幅圖中都有哪種幾何圖形?等腰三角形的“三線合一”性質的理解及其應用。1.探索并掌握等腰三角形的兩個性質2.會運用等腰三角形的概念和性質解決有關問題。學習目標:學習重點:等腰三角形性質及其簡單應用。學習難點:觀察實物形成概念有兩條邊相等的三角形叫等腰三角形ABC
【總結】等腰三角形等腰三角形(一)教學目標(一)教學知識點1.等腰三角形的概念.2.等腰三角形的性質.3.等腰三角形的概念及性質的應用.(二)能力訓練要求1.經歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點.2.探索并掌握等腰三角形的性質.
2024-11-19 00:44
【總結】等腰三角形的性質衡陽市十五中汪楚折一折剪一剪展一展等腰三角形定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊(AB和AC)叫做腰另一條邊(BC)叫做底邊兩腰所夾的角(∠A)叫做頂角設問1:剛才剪紙得到的△ABC是軸對稱圖形嗎?它的對稱軸是什么?折痕AD所在
2024-11-22 00:54
【總結】等腰三角形(三)◆隨堂檢測1一個等邊三角形的角平分線、高、中線的總條數為_________.,已知線段AB,分別以AB、為圓心,大于12AB長為半徑畫弧,兩弧相交于點C、Q,連結CQ與AB相交于點D,連結AC,BC.那么:(1)∠ADC?________度;(2)當線段4
2024-11-13 01:46
【總結】(人教版)八年級數學上冊等腰三角形的判定我們在上一節(jié)學習了等腰三角形的性質?,F在你能回答我一些問題嗎?一、復習:1、等腰三角形的性質定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理的逆命題是什么?如果一個三角形有兩個角相等,那么這個三角形是等腰三角形。
2024-11-21 02:16
【總結】第一章三角形的證明1.等腰三角形(三)湖北宜昌市長江中學李玉平一、學生知識狀況分析本節(jié)課是等腰三角形的第三課時,通過前面兩課時的學習,學生已經掌握了等腰三角形的相關性質,并知道了用綜合法證明命題的基本要求和步驟。為學習等腰三角形的判定定理奠定了知識和方法的基礎。二、教學任務分析本節(jié)課的主要任務是探索等
2024-11-24 17:07