【總結】等腰三角形的判定臨海中學初二備課組等腰三角形的判定學習目標自學指導討論練習課堂作業(yè)我們在上一節(jié)學習了等腰三角形的性質?,F(xiàn)在你能回答我一些問題嗎?一、復習:1、等腰三角形的性質定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理
2025-08-01 18:01
【總結】復習引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡稱“在同一個三角形中,等邊對等角”;、底邊上的中線和底邊上的高互相重合。簡稱“等腰三角形三線合一”,對稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個三角形
2025-08-01 13:41
【總結】探索·合作·創(chuàng)新三步五環(huán)教學法張麗紅學習目標探索·合作·創(chuàng)新三步五環(huán)教學法、等邊三角形的性質和判定進行簡單的計算、推理證明。,構建等腰三角形的知識體系。,數(shù)形結合,轉化,方程等數(shù)學思想方法。探索·合作·創(chuàng)新三步五環(huán)教學法名
2024-11-24 13:18
【總結】等腰三角形的判定1、等腰三角形的性質?2、等腰三角形的判定方法都有哪些?定義:有兩邊相等的三角形是等腰三角形還有其他方法嗎?導入新課如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警,當時測得∠A=∠B.如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風浪因素)?
【總結】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識別等腰三角形的有關邊、角條件
2024-11-09 05:34
【總結】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2025-08-16 00:54
2025-08-16 01:46
【總結】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質1、等腰三角形的兩底角相等:∠B=∠C性質2、等腰三角形三線合一性質3、等腰三角形是軸對稱圖形,
2025-08-05 10:34
【總結】《等腰三角形的性質》說課稿羅定市船步中學謝月如各位評委老師,大家好。今天我說課的內容是《等腰三角形的性質》。根據(jù)新課標的理念,我將以“教什么”,“怎么教”,“為什么這樣教”為思路,從以下幾個方面加以說明:一、教材分析1、本節(jié)教材的地位和作用《等腰三角形的性質》是2013年人教版《義務教育教科書》數(shù)學八年級(上冊)第十三章第三節(jié)第一課時的內容。本節(jié)課是在學生掌握
2025-05-02 13:20
【總結】第一篇:等腰三角形 全等三角形 一、教學目標 探索并掌握兩個三角形全等的條件:“ASA”“AAS”, 經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達、邏輯推理等能力;并通過對知識方...
2024-11-15 06:05
【總結】馬頭鎮(zhèn)初中黃嶄用一張長方形紙片,每個人的長方形的大小和形狀可以不一樣,你能制作出一個等腰三角形嗎?你發(fā)現(xiàn)了什么?探索:1、等腰三角形是軸對稱圖形。2、等腰三角形的頂角平分線所在的直線是它的對稱軸。做一做:動手做一做ACB△ABC有什么特點?看一看有兩
2024-11-21 04:19
【總結】第一篇:等腰三角形性質教學設計 等腰三角形的性質教學設計 一、教學目標 (一)、知識目標 1、掌握等腰三角形的兩底角相等,底邊上的高、中線及頂角平分線三線合一的性質,并能運用它們進行有關的論證...
2024-11-15 06:01
【總結】八年級上冊等腰三角形(第4課時)課件說明?本節(jié)課在學習了軸對稱、等邊三角形的性質及判定的基礎上,探究直角三角形的一條特殊性質,它反映了直角三角形中的邊角關系.本節(jié)課是等邊三角形性質的簡單運用,同時也為九年級學習銳角三角函數(shù)作了一定的知識儲備.?學習目標:1.探索含30°角
2024-11-24 15:53
【總結】......等腰三角形考點一、等腰三角形的特征和識別⑴等腰三角形的兩個_____________相等(簡寫成“________________”)⑵等腰三角形的_________________、__________
2025-04-17 08:21
【總結】如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角度等邊)ABC2、如圖,下列推理正確嗎?ABCD21∵∠1=∠2∴BD=DC(等角對等邊)∵∠1
2024-11-24 17:30